论文标题

KACC:用于知识抽象,具体化和完成的多任务基准

KACC: A Multi-task Benchmark for Knowledge Abstraction, Concretization and Completion

论文作者

Zhou, Jie, Hu, Shengding, Lv, Xin, Yang, Cheng, Liu, Zhiyuan, Xu, Wei, Jiang, Jie, Li, Juanzi, Sun, Maosong

论文摘要

综合知识图(KG)包含一个实例级实体图和本体级概念图。两视频KG为模型提供了一个测试床,以“模拟”人类在知识抽象,具体化和完成(KACC)上的能力(KACC),这对于人类认识世界和管理学习知识至关重要。现有研究主要集中于KACC的部分方面。为了促进模型KACC能力的彻底分析,我们通过根据数据集量表,任务覆盖范围和难度来改善现有基准,提出一个统一的KG基准。具体来说,我们收集包含较大概念图的新数据集,丰富的跨视图链接以及密集的实体图。基于数据集,我们提出了新任务,例如多跳知识抽象(MKA),多跳知识知识具体化(MKC),然后设计一个全面的基准。对于MKA和MKC任务,我们进一步注释了多跳的分层三元组作为较难的样本。现有方法的实验结果证明了我们的基准的挑战。该资源可在https://github.com/thunlp/kacc上获得。

A comprehensive knowledge graph (KG) contains an instance-level entity graph and an ontology-level concept graph. The two-view KG provides a testbed for models to "simulate" human's abilities on knowledge abstraction, concretization, and completion (KACC), which are crucial for human to recognize the world and manage learned knowledge. Existing studies mainly focus on partial aspects of KACC. In order to promote thorough analyses for KACC abilities of models, we propose a unified KG benchmark by improving existing benchmarks in terms of dataset scale, task coverage, and difficulty. Specifically, we collect new datasets that contain larger concept graphs, abundant cross-view links as well as dense entity graphs. Based on the datasets, we propose novel tasks such as multi-hop knowledge abstraction (MKA), multi-hop knowledge concretization (MKC) and then design a comprehensive benchmark. For MKA and MKC tasks, we further annotate multi-hop hierarchical triples as harder samples. The experimental results of existing methods demonstrate the challenges of our benchmark. The resource is available at https://github.com/thunlp/KACC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源