论文标题
利用空间不确定性在线错误补偿EMT
Leveraging Spatial Uncertainty for Online Error Compensation in EMT
论文作者
论文摘要
目的:电磁跟踪(EMT)可以潜在地补充荧光镜导航,从而减少混合环境中的辐射暴露。由于对外部扭曲的敏感性,需要对EMT的系统错误进行补偿。在在线环境中,指南程序中EMT的薪酬算法仅是实用的。 方法:我们收集位置数据并训练对称人工神经网络(ANN)体系结构,以补偿导航错误。在线和离线场景中都评估了结果,并将其与多项式拟合进行了比较。我们评估ANN提出的补偿的空间不确定性。基于实际数据的仿真显示了如何利用这种不确定性度量来提高准确性并限制混合导航中的辐射暴露。 结果:ANN将看不见的扭曲补偿超过70%,表现优于多项式回归。在已知的扭曲方面工作,ANN的表现也优于多项式。我们从经验上证明了跟踪准确性和模型不确定性之间的线性关系。混合跟踪的有效性显示在模拟实验中。 结论:ANN适用于EMT误差补偿,并且可以在看不见的扭曲中概括。当开发空间误差补偿算法时,需要评估模型不确定性,以便可以优化培训数据。最后,我们发现EMT中的错误补偿减少了混合导航中对X射线图像的需求。
Purpose: Electromagnetic Tracking (EMT) can potentially complement fluoroscopic navigation, reducing radiation exposure in a hybrid setting. Due to the susceptibility to external distortions, systematic error in EMT needs to be compensated algorithmically. Compensation algorithms for EMT in guidewire procedures are only practical in an online setting. Methods: We collect positional data and train a symmetric Artificial Neural Network (ANN) architecture for compensating navigation error. The results are evaluated in both online and offline scenarios and are compared to polynomial fits. We assess spatial uncertainty of the compensation proposed by the ANN. Simulations based on real data show how this uncertainty measure can be utilized to improve accuracy and limit radiation exposure in hybrid navigation. Results: ANNs compensate unseen distortions by more than 70%, outperforming polynomial regression. Working on known distortions, ANNs outperform polynomials as well. We empirically demonstrate a linear relationship between tracking accuracy and model uncertainty. The effectiveness of hybrid tracking is shown in a simulation experiment. Conclusion: ANNs are suitable for EMT error compensation and can generalize across unseen distortions. Model uncertainty needs to be assessed when spatial error compensation algorithms are developed, so that training data collection can be optimized. Finally, we find that error compensation in EMT reduces the need for x-ray images in hybrid navigation.