论文标题

LSHR-NET:使用混合重量神经网络的高分辨率计算成像的硬件友好解决方案

LSHR-Net: a hardware-friendly solution for high-resolution computational imaging using a mixed-weights neural network

论文作者

Bai, Fangliang, Liu, Jinchao, Liu, Xiaojuan, Osadchy, Margarita, Wang, Chao, Gibson, Stuart J.

论文摘要

最近的工作表明,基于神经网络的方法可以从压缩感知的测量中重建图像,从而在准确性和信号压缩方面有了显着改善。这样的方法可以显着提高计算成像硬件的能力。但是,迄今为止,已经存在两个主要缺点:(1)与计算成像硬件一起使用时,在大多数现有作品中提出的高精度实质性感应模式可能会证明是有问题的,例如数字微型采样设备以及(2)用于图像重建的网络结构涉及密集型计算,也不适用于硬件的执行力。为了解决这些问题,我们提出了一种基于混合重量神经网络的新型硬件友好型解决方案,用于计算成像。特别是,学习的二进制二进制感测模式是针对采样设备量身定制的。此外,我们提出了一种用于低分辨率图像采样和高分辨率重建方案的递归网络结构。它通过在小型中间特征图上的操作卷积来减少所需的测量数量和重建计算。递归结构进一步降低了模型大小,从而使网络使用硬件部署时更有效。我们的方法已在基准数据集上进行了验证,并实现了最新重建精度的状态。我们与概念验证硬件设置一起测试了我们提出的网络。

Recent work showed neural-network-based approaches to reconstructing images from compressively sensed measurements offer significant improvements in accuracy and signal compression. Such methods can dramatically boost the capability of computational imaging hardware. However, to date, there have been two major drawbacks: (1) the high-precision real-valued sensing patterns proposed in the majority of existing works can prove problematic when used with computational imaging hardware such as a digital micromirror sampling device and (2) the network structures for image reconstruction involve intensive computation, which is also not suitable for hardware deployment. To address these problems, we propose a novel hardware-friendly solution based on mixed-weights neural networks for computational imaging. In particular, learned binary-weight sensing patterns are tailored to the sampling device. Moreover, we proposed a recursive network structure for low-resolution image sampling and high-resolution reconstruction scheme. It reduces both the required number of measurements and reconstruction computation by operating convolution on small intermediate feature maps. The recursive structure further reduced the model size, making the network more computationally efficient when deployed with the hardware. Our method has been validated on benchmark datasets and achieved the state of the art reconstruction accuracy. We tested our proposed network in conjunction with a proof-of-concept hardware setup.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源