论文标题

迈向大数据分析的集成平台

Towards an Integrated Platform for Big Data Analysis

论文作者

Bohlouli, Mahdi, Schulz, Frank, Angelis, Lefteris, Pahor, David, Brandic, Ivona, Atlan, David, Tate, Rosemary

论文摘要

世界上的数据量正在迅速扩大。每天,科学实验,公司和最终用户的活动都会创建大量数据。这些大数据集已被标记为“大数据”,它们的存储,处理和分析给计算机科学研究人员和IT专业人员带来了许多新的挑战。除了有效的数据管理外,还来自于半结构化或非结构化数据以及从时间关键处理要求引起的其他复杂性。为了了解这些大量数据,需要高级可视化和数据探索技术。近年来已经开发了针对这些挑战的创新方法,并将继续成为未来重新搜索和行业的热门话题。对当前方法的调查表明,在数据管理,处理,分析或可视化中,通常只有一个或两个方面是广告。本文介绍了结合所有这些方面的大数据分析的集成平台形式的愿景。这种方法的主要好处是整个平台的可扩展性,算法更好的参数化,对系统资源的更有效使用以及在端到端数据分析过程中的可用性提高。

The amount of data in the world is expanding rapidly. Every day, huge amounts of data are created by scientific experiments, companies, and end users' activities. These large data sets have been labeled as "Big Data", and their storage, processing and analysis presents a plethora of new challenges to computer science researchers and IT professionals. In addition to efficient data management, additional complexity arises from dealing with semi-structured or unstructured data, and from time critical processing requirements. In order to understand these massive amounts of data, advanced visualization and data exploration techniques are required. Innovative approaches to these challenges have been developed during recent years, and continue to be a hot topic for re-search and industry in the future. An investigation of current approaches reveals that usually only one or two aspects are ad-dressed, either in the data management, processing, analysis or visualization. This paper presents the vision of an integrated plat-form for big data analysis that combines all these aspects. Main benefits of this approach are an enhanced scalability of the whole platform, a better parameterization of algorithms, a more efficient usage of system resources, and an improved usability during the end-to-end data analysis process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源