论文标题
强大的Covid-19肺炎胸部X射线筛查的级联学习策略
A Cascaded Learning Strategy for Robust COVID-19 Pneumonia Chest X-Ray Screening
论文作者
论文摘要
我们引入了COVID-19(又名SARS-COV-2)肺炎的综合筛查平台。拟议的基于AI的系统可用于胸部X射线(CXR)图像,以预测患者是否感染了Covid-19疾病。尽管最近在国际共同的努力方面提供了各种开放数据,但CXR图像的公开收集仍然相对较小,对于可靠地培训深度神经网络(DNN)以进行COVID-19的预测。为了更好地解决这种低效率,我们设计了一种级联的学习策略,以提高所得DNN分类模型的灵敏度和特异性。我们的方法利用非旋转19肺炎的大型CXR图像数据集通过级联学习方案概括了原始训练有素的分类模型。结果显示,所得的筛选系统可在扩展的数据集上实现良好的分类性能,包括新添加的COVID-19 CXR图像。
We introduce a comprehensive screening platform for the COVID-19 (a.k.a., SARS-CoV-2) pneumonia. The proposed AI-based system works on chest x-ray (CXR) images to predict whether a patient is infected with the COVID-19 disease. Although the recent international joint effort on making the availability of all sorts of open data, the public collection of CXR images is still relatively small for reliably training a deep neural network (DNN) to carry out COVID-19 prediction. To better address such inefficiency, we design a cascaded learning strategy to improve both the sensitivity and the specificity of the resulting DNN classification model. Our approach leverages a large CXR image dataset of non-COVID-19 pneumonia to generalize the original well-trained classification model via a cascaded learning scheme. The resulting screening system is shown to achieve good classification performance on the expanded dataset, including those newly added COVID-19 CXR images.