论文标题
COLBERT:使用平行神经网络中的Bert句子来计算幽默
ColBERT: Using BERT Sentence Embedding in Parallel Neural Networks for Computational Humor
论文作者
论文摘要
幽默检测和评级的自动化在现代技术(例如人形机器人,聊天机器人和虚拟助手)中具有有趣的用例。在本文中,我们提出了一种基于流行的幽默语言理论的短文中检测和评级幽默的新颖方法。提出的技术方法通过将给定文本的句子分开并利用BERT模型来生成每个词来启动。将嵌入式馈送到神经网络(每个句子的一行)中的隐藏层的分离线以提取潜在特征。最后,平行线被串联以确定句子之间的一致性和其他关系并预测目标值。我们伴随论文提供了一个新颖的数据集,用于幽默检测,其中包括200,000条正式的短文。除了评估我们在新颖数据集上的工作外,我们还参加了一场现场机器学习竞赛,该竞赛的重点是在西班牙推文中对幽默进行评分。在幽默检测实验中,提出的模型获得了0.982和0.869的F1得分,这些实验超过了一般和最先进的模型。在两个对比设置上进行的评估证实了模型的强度和鲁棒性,并提出了在当前任务中实现高准确性的两个重要因素:1)使用句子嵌入和2)在设计拟议模型时利用幽默的语言结构。
Automation of humor detection and rating has interesting use cases in modern technologies, such as humanoid robots, chatbots, and virtual assistants. In this paper, we propose a novel approach for detecting and rating humor in short texts based on a popular linguistic theory of humor. The proposed technical method initiates by separating sentences of the given text and utilizing the BERT model to generate embeddings for each one. The embeddings are fed to separate lines of hidden layers in a neural network (one line for each sentence) to extract latent features. At last, the parallel lines are concatenated to determine the congruity and other relationships between the sentences and predict the target value. We accompany the paper with a novel dataset for humor detection consisting of 200,000 formal short texts. In addition to evaluating our work on the novel dataset, we participated in a live machine learning competition focused on rating humor in Spanish tweets. The proposed model obtained F1 scores of 0.982 and 0.869 in the humor detection experiments which outperform general and state-of-the-art models. The evaluation performed on two contrasting settings confirm the strength and robustness of the model and suggests two important factors in achieving high accuracy in the current task: 1) usage of sentence embeddings and 2) utilizing the linguistic structure of humor in designing the proposed model.