论文标题
通过示例增强和课程优化迈向多模式响应产生
Towards Multimodal Response Generation with Exemplar Augmentation and Curriculum Optimization
论文作者
论文摘要
最近,基于变异的自动编码器(VAE)方法在改善产生的响应的多样性方面取得了令人印象深刻的进步。但是,这些方法通常会遭受相关性下降的成本,并伴随着多样性的改善。在本文中,我们提出了一个新型的多模式响应生成框架,具有示例性增强和课程优化,以增强产生的响应的相关性和多样性。首先,与通常近似于简单高斯后部分布的现有基于VAE的模型不同,我们提出了高斯混合物后分布(即多模式),以进一步提高响应多样性,这有助于捕获响应的复杂语义。然后,为了确保在多样性增加时相关性不会降低,我们完全利用了从训练数据中检索到后验分布模型中的类似示例(示例)以增强响应相关性。此外,为了促进高斯混合物事先和后验分布的收敛性,我们设计了一种课程优化策略,以在多个培训标准下逐步训练该模型,从易于到硬。广泛使用的总机和DailyDialog数据集的实验结果表明,与强大的基线相比,我们的模型在多样性和相关性方面取得了重大改进。
Recently, variational auto-encoder (VAE) based approaches have made impressive progress on improving the diversity of generated responses. However, these methods usually suffer the cost of decreased relevance accompanied by diversity improvements. In this paper, we propose a novel multimodal response generation framework with exemplar augmentation and curriculum optimization to enhance relevance and diversity of generated responses. First, unlike existing VAE-based models that usually approximate a simple Gaussian posterior distribution, we present a Gaussian mixture posterior distribution (i.e, multimodal) to further boost response diversity, which helps capture complex semantics of responses. Then, to ensure that relevance does not decrease while diversity increases, we fully exploit similar examples (exemplars) retrieved from the training data into posterior distribution modeling to augment response relevance. Furthermore, to facilitate the convergence of Gaussian mixture prior and posterior distributions, we devise a curriculum optimization strategy to progressively train the model under multiple training criteria from easy to hard. Experimental results on widely used SwitchBoard and DailyDialog datasets demonstrate that our model achieves significant improvements compared to strong baselines in terms of diversity and relevance.