论文标题
时空数据分析与年代网络
Spatiotemporal data analysis with chronological networks
论文作者
论文摘要
在过去几年中,来自不同领域的时空数据集的数量和大小一直在迅速增加,这需要开发可靠和快速的方法来分析和从中提取信息。在本文中,我们提出了一个基于网络的模型,用于时空数据分析,称为Chronnet。它包括将几何空间划分为以时间顺序连接的节点表示的网格单元。该模型的主要目标是表示网络中具有较强链接的单元格之间的连续复发事件。该表示允许使用网络科学和图形挖掘工具来从时空数据中提取信息。 Chronnet施工过程很快,这使其适用于大型数据集。在本文中,我们描述了如何使用人工和真实数据的模型。为此,我们提出了一个人工时空数据集生成器,以展示Chronnet不仅捕获简单的统计数据,还可以捕获频繁的模式,空间变化,离群值和时空簇。此外,我们使用单个Chronnet分析了由全球火灾探测组成的现实世界数据集,其中描述了火灾事件的频率,离群火灾探测和季节性活动的频率。
The amount and size of spatiotemporal data sets from different domains have been rapidly increasing in the last years, which demands the development of robust and fast methods to analyze and extract information from them. In this paper, we propose a network-based model for spatiotemporal data analysis called chronnet. It consists of dividing a geometrical space into grid cells represented by nodes connected chronologically. The main goal of this model is to represent consecutive recurrent events between cells with strong links in the network. This representation permits the use of network science and graphing mining tools to extract information from spatiotemporal data. The chronnet construction process is fast, which makes it suitable for large data sets. In this paper, we describe how to use our model considering artificial and real data. For this purpose, we propose an artificial spatiotemporal data set generator to show how chronnets capture not just simple statistics, but also frequent patterns, spatial changes, outliers, and spatiotemporal clusters. Additionally, we analyze a real-world data set composed of global fire detections, in which we describe the frequency of fire events, outlier fire detections, and the seasonal activity, using a single chronnet.