论文标题
Minkowski时空的游戏
Games in Minkowski Spacetime
论文作者
论文摘要
本文贡献了一种新的游戏,称为“时空游戏”,并提供完美的信息。在时空游戏中,代理商在Minkowski Spacetime的各个位置做出决定。一方面,时空游戏可以看作是战略游戏中最不常见的分母,另一方面是具有完美信息的动态游戏。实际上,战略游戏对应于仅具有超级分离的决策(“不同的房间”)的配置。另一方面,具有完美信息的动态游戏对应于定时分离的决定(“依次”)。我们展示了如何计算时空游戏的战略形式和降低战略形式。结果,许多现有的解决方案概念,例如NASH均衡,合理性,个人合理性等,自然适用于时空游戏。我们介绍了一系列时空游戏的规范注入,并以不完美的信息以广泛的形式向游戏类介绍;我们提供一个反例,表明这是一个严格的超集团。这提供了对大量游戏的新颖解释,这些游戏以特殊相对论的理论为角度,并具有不完美的信息,其中非辛格尔顿信息集来自有限的光速。该框架可能是在量子基础中推理的有用工具,在量子基础中,重要的是选择测量轴或测量结果之类的决策是空位般的或时间型分离的。我们尤其要考虑具有四个决策点的爱因斯坦 - 波多尔斯基 - 罗森(Einstein-Podolsky-Rosen)实验的特殊情况,并建模了相应的时空游戏结构。
This paper contributes a new class of games called spacetime games with perfect information. In spacetime games, the agents make decisions at various positions in Minkowski spacetime. Spacetime games can be seen as the least common denominator of strategic games on the one hand, and dynamic games with perfect information on the other hand. Indeed, strategic games correspond to a configuration with only spacelike-separated decisions ("different rooms"). Dynamic games with perfect information, on the other hand, correspond to timelike-separated decisions ("in turn"). We show how to compute the strategic form and reduced strategic form of spacetime games. As a consequence, many existing solution concepts, such as Nash equilibria, rationalizability, individual rationality, etc, apply naturally to spacetime games. We introduce a canonical injection of the class of spacetime games with perfect information into the class of games in extensive form with imperfect information; we provide a counterexample showing that this is a strict superset. This provides a novel interpretation of a large number of games in extensive form with imperfect information in terms of the theory of special relativity, where non-singleton information sets arise from the finite speed of light. This framework can be a useful tool for reasoning in quantum foundations, where it is important whether decisions such as the choice of a measurement axis or the outcome of a measurement are spacelike- or timelike- separated. We look in particular at the special case of the Einstein-Podolsky-Rosen experiment with four decision points, and model a corresponding spacetime game structure.