论文标题
通过数据驱动的减少订单建模技术,用于海军形状设计和优化问题的有效计算框架
An efficient computational framework for naval shape design and optimization problems by means of data-driven reduced order modeling techniques
论文作者
论文摘要
该贡献描述了在海军体系结构应用程序中的数据实现 - 驱动形状优化管道。我们采用降低的订单模型(ROM),以提高整体优化的效率,保持模块化和无方程式的性质以针对工业需求。我们将上述管道应用于逼真的游轮,以减少总阻力。我们首先定义设计空间,该空间是通过使用自由形式变形(FFD)以参数方式变形的初始形状而生成的。每个新船体的性能的评估是通过通过两相(水和空气)流体离散化来模拟通量来确定的。由于流体动力学模型可能会导致非常昂贵(尤其是处理复杂的工业几何形状),因此我们还提出了动态模式分解(DMD)增强功能,以降低单个数值模拟的计算成本。最终通过高斯过程回归(POD-GPR)技术来实现实时计算。得益于快速近似,遗传优化算法变得可行,可以融入最佳形状。
This contribution describes the implementation of a data--driven shape optimization pipeline in a naval architecture application. We adopt reduced order models (ROMs) in order to improve the efficiency of the overall optimization, keeping a modular and equation-free nature to target the industrial demand. We applied the above mentioned pipeline to a realistic cruise ship in order to reduce the total drag. We begin by defining the design space, generated by deforming an initial shape in a parametric way using free form deformation (FFD). The evaluation of the performance of each new hull is determined by simulating the flux via finite volume discretization of a two-phase (water and air) fluid. Since the fluid dynamics model can result very expensive -- especially dealing with complex industrial geometries -- we propose also a dynamic mode decomposition (DMD) enhancement to reduce the computational cost of a single numerical simulation. The real--time computation is finally achieved by means of proper orthogonal decomposition with Gaussian process regression (POD-GPR) technique. Thanks to the quick approximation, a genetic optimization algorithm becomes feasible to converge towards the optimal shape.