论文标题

一维准二元镶嵌晶格,具有精确的迁移率边缘

One dimensional quasiperiodic mosaic lattice with exact mobility edges

论文作者

Wang, Yucheng, Xia, Xu, Zhang, Long, Yao, Hepeng, Chen, Shu, You, Jiangong, Zhou, Qi, Liu, Xiong-Jun

论文摘要

能量中的移动性边缘(MES)分开扩展和局部状态是理解本地化物理学的核心概念。在一维(1D)的准膜系统中,尽管在某些情况下可能存在MES,但允许确切理解的分析结果很少。在这里,我们在光谱中发现了一类具有MES的确切可溶解的1D模型,其中ic层现场电势被嵌入在带有间隔位点的晶格中。分析解决方案不仅为ME提供了确切的结果,还为光谱中所有状态的本地化和扩展特征提供了确切的结果,这是通过计算Avila全局理论的Lyapunov指数得出的,并且还通过计算分形维度来验证。我们进一步提出了一种具有实验性可行性的新型方案,以基于光学拉曼晶格实现我们的模型,这为对预测的精确ME物理学的实验探索铺平了道路。

The mobility edges (MEs) in energy which separate extended and localized states are a central concept in understanding the localization physics. In one-dimensional (1D) quasiperiodic systems, while MEs may exist for certain cases, the analytic results which allow for an exact understanding are rare. Here we uncover a class of exactly solvable 1D models with MEs in the spectra, where quasiperiodic on-site potentials are inlaid in the lattice with equally spaced sites. The analytical solutions provide the exact results not only for the MEs, but also for the localization and extended features of all states in the spectra, as derived through computing the Lyapunov exponents from Avila's global theory, and also numerically verified by calculating the fractal dimension. We further propose a novel scheme with experimental feasibility to realize our model based on an optical Raman lattice, which paves the way for experimental exploration of the predicted exact ME physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源