论文标题

拉格朗日复杂性持续存在,多峰流动强迫在毛弹性系统中

Lagrangian complexity persists with multimodal flow forcing in poroelastic systems

论文作者

Trefry, Michael, Lester, Daniel, Metcalfe, Guy, Wu, Junhong

论文摘要

我们将对毛弹性介质中复杂传输动力学的起源的先前分析扩展到了通过多模谱生成边界处的输入瞬态信号的情况。通过添加谐波和非谐情频率作为扰动到基本模式的扰动,我们检查了这种多模式信号如何影响毛弹性流的拉格朗日复杂性。虽然结果适用于所有毛弹性介质(工业,生物学和地球物理),但对于具体性,我们以潮汐强迫的排放边界为单位的不倾斜的沿海地下水系统来进行讨论。电导率场的特定局部区域会产生固定和编织(混合)轨迹的马鞍,从而导致地下水停留时间分布的意外行为和潮汐边界附近的拓扑混合歧管。尽管频谱复杂性的增加可以减少周期点的发生,尤其是对于具有较长特征周期的Anharmonic光谱,Lagrangian复杂性的其他特征仍然存在。天然多模式潮汐信号在异质含水层中受封闭的地下水流动的作用可以诱导异国情调的流动拓扑和混合效应,这些效果与地下水排放过程的常规概念截然不同。综上所述,我们的结果表明,频谱复杂性的提高导致通过毛弹性介质流中的Lagrangian结构更加复杂。

We extend previous analyses of the origins of complex transport dynamics in poroelastic media to the case where the input transient signal at a boundary is generated by a multimodal spectrum. By adding harmonic and anharmonic modal frequencies as perturbations to a fundamental mode we examine how such multimodal signals affect the Lagrangian complexity of poroelastic flow. While the results apply to all poroelastic media (industrial, biological and geophysical), for concreteness we couch the discussion in terms of unpumped coastal groundwater systems having a discharge boundary forced by tides. Particular local regions of the conductivity field generate saddles that hold up and braid (mix) trajectories, resulting in unexpected behaviours of groundwater residence time distributions and topological mixing manifolds near the tidal boundary. While increasing spectral complexity can reduce the occurrence of periodic points, especially for anharmonic spectra with long characteristic periods, other signatures of Lagrangian complexity persist. The action of natural multimodal tidal signals on confined groundwater flow in heterogeneous aquifers can induce exotic flow topologies and mixing effects that are profoundly different to conventional concepts of groundwater discharge processes. Taken together, our results imply that increasing spectral complexity results in more complex Lagrangian structure in flows through poroelastic media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源