论文标题

红色gan:通过条件发电的攻击类失衡。皮肤病变皮肤镜和脑肿瘤MRI的医学图像合成的另一个观点

Red-GAN: Attacking class imbalance via conditioned generation. Yet another perspective on medical image synthesis for skin lesion dermoscopy and brain tumor MRI

论文作者

Qasim, Ahmad B, Ezhov, Ivan, Shit, Suprosanna, Schoppe, Oliver, Paetzold, Johannes C, Sekuboyina, Anjany, Kofler, Florian, Lipkova, Jana, Li, Hongwei, Menze, Bjoern

论文摘要

在稀缺数据制度下利用学习算法是医学成像领域的限制和现实。为了减轻问题,我们提出了基于生成对抗网络的数据增强协议。我们在像素级(分段掩码)和全球级别信息(获取环境或病变类型)上调节网络。这种条件可立即访问图像标签对,同时控制合成图像的全局类特异性外观。为了刺激与分割任务相关的功能的合成,将以分段形式的其他被动玩家引入对抗性游戏中。我们在两个医疗数据集上验证了该方法:brats,isic。通过将合成图像注入训练集中,通过注入类分布来控制数据集类别的准确性水平。

Exploiting learning algorithms under scarce data regimes is a limitation and a reality of the medical imaging field. In an attempt to mitigate the problem, we propose a data augmentation protocol based on generative adversarial networks. We condition the networks at a pixel-level (segmentation mask) and at a global-level information (acquisition environment or lesion type). Such conditioning provides immediate access to the image-label pairs while controlling global class specific appearance of the synthesized images. To stimulate synthesis of the features relevant for the segmentation task, an additional passive player in a form of segmentor is introduced into the adversarial game. We validate the approach on two medical datasets: BraTS, ISIC. By controlling the class distribution through injection of synthetic images into the training set we achieve control over the accuracy levels of the datasets' classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源