论文标题
通过量子催化增强离散调制的连续可变测量设备无关的量子键分布
Enhancing discrete-modulated continuous-variable measurement-device-independent quantum key distribution via quantum catalysis
论文作者
论文摘要
离散的调制可以弥补与测量设备不依赖的连续可变量子密钥分布(MDI-CVQKD)中传输距离短缺的短缺,该分布在所有侧向通道攻击方面具有独特的优势,但在进一步的性能改进方面也充满挑战。在这里,我们建议一种量子催化(QC)方法,以增强离散调节(DM)MDI-CVQKD的性能,以可实现的秘密关键率和延长最大传输距离。数值模拟结果表明,基于QC的MDI-CVKD具有离散调制,涉及零光子催化(ZPC)操作不仅可以获得比原始DM协议更高的秘密密钥率,而且还有助于相应最佳差异的合理增加。至于极端的不对称和对称情况,在相同的参数下,可以进一步改善ZPC涉及DM MDI-CVKD系统的秘密关键率和最大传输距离。这种方法使系统能够忍受较低的和解效率,这将通过最先进的技术来促进实际实施。
The discrete modulation can make up for the shortage of transmission distance in measurement-device-independent continuous-variable quantum key distribution (MDI-CVQKD) that has an unique advantage against all side-channel attacks but also challenging for the further performance improvement. Here we suggest a quantum catalysis (QC) approach for enhancing the performance of the discrete-modulated (DM) MDI-CVQKD in terms of the achievable secret key rate and lengthening the maximal transmission distance. The numerical simulation results show that the QC-based MDI-CVQKD with discrete modulation that involves a zero-photon catalysis (ZPC) operation can not only obtain a higher secret key rate than the original DM protocol, but also contributes to the reasonable increase of the corresponding optimal variance. As for the extreme asymmetric and symmetric cases, the secret key rate and maximal transmission distance of the ZPC-involved DM MDI-CVQKD system can be further improved under the same parameters. This approach enables the system to tolerate lower reconciliation efficiency, which will promote the practical implementations with state-of-art technology.