论文标题

因果推断的机器学习:使用跨拟合估计器

Machine learning for causal inference: on the use of cross-fit estimators

论文作者

Zivich, Paul N, Breskin, Alexander

论文摘要

现代因果推理方法允许使用机器学习来削弱参数建模假设。但是,机器学习的使用可能会导致推理并发症。已经提出了双重的跨拟合估计器来产生更好的统计特性。 我们进行了一项模拟研究,以评估平均因果效应(ACE)的几个不同估计量的性能。模拟治疗和结果的数据生成机制包括对数转换,多项式项和不连续性。我们比较了单一稳定的估计器(G-Compuntion,逆概率加权)和双重稳定估计器(增强的反可能性加权,目标最大似然估计)。通过参数模型和集合机器学习估算了滋扰功能。我们进一步评估了双重跨拟合估计器。 使用正确指定的参数模型,所有估计器都是公正的,置信区间均达到标称覆盖范围。当与机器学习一起使用时,双重跨拟合估计器在偏见,差异和置信区间覆盖范围方面大大优于所有其他估计器。 由于难以正确指定高维数据中的参数模型,因此在大多数流行病学研究中,具有合奏学习和交叉拟合的双重稳定估计器可能是估计ACE的首选方法。但是,这些方法可能需要更大的样本量以避免有限样本问题。

Modern causal inference methods allow machine learning to be used to weaken parametric modeling assumptions. However, the use of machine learning may result in complications for inference. Doubly-robust cross-fit estimators have been proposed to yield better statistical properties. We conducted a simulation study to assess the performance of several different estimators for the average causal effect (ACE). The data generating mechanisms for the simulated treatment and outcome included log-transforms, polynomial terms, and discontinuities. We compared singly-robust estimators (g-computation, inverse probability weighting) and doubly-robust estimators (augmented inverse probability weighting, targeted maximum likelihood estimation). Nuisance functions were estimated with parametric models and ensemble machine learning, separately. We further assessed doubly-robust cross-fit estimators. With correctly specified parametric models, all of the estimators were unbiased and confidence intervals achieved nominal coverage. When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage. Due to the difficulty of properly specifying parametric models in high dimensional data, doubly-robust estimators with ensemble learning and cross-fitting may be the preferred approach for estimation of the ACE in most epidemiologic studies. However, these approaches may require larger sample sizes to avoid finite-sample issues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源