论文标题
用于测量和控制的量子反馈
Quantum feedback for measurement and control
论文作者
论文摘要
本科级别引入的标准量子形式主义将测量视为瞬时崩溃。但是,实际上,在真正的无限时间间隔内不会发生任何身体过程。对开放量子系统的更微妙的研究导致了连续测量和量子轨迹的理论,其中波函数在与相互作用相关的有限时间尺度上发生。在这种形式主义中,有可能在更基本的测量模型的背景下提出许多新问题,这些问题是微不足道甚至不明显的。在本文中,我们在理论上和实验上都研究了当实验设备可以解决测量的连续动力学时,从根本上开始出现了哪些新功能。从理论上讲,我们表明,当一个人可以在测量过程的时间范围内执行反馈操作时,所得工具可提供对纠缠生成的更大控制,并且在某些情况下可以最佳地生成它。我们使用新的形式主义得出这些结果,该形式主义涵盖了大多数已知的量子反馈方案。在实验上,我们表明,连续测量使人们可以观察接受同时进行非交通测量的系统的动力学,从而可以重新解释海森堡不确定性原理。最后,我们将对量子反馈的理论重点与超导电路的实验能力相结合,以实现反馈控制的量子放大器。所得系统能够进行自适应测量,我们用来执行第一个规范相测量。
The standard quantum formalism introduced at the undergraduate level treats measurement as an instantaneous collapse. In reality however, no physical process can occur over a truly infinitesimal time interval. A more subtle investigation of open quantum systems lead to the theory of continuous measurement and quantum trajectories, in which wave function collapse occurs over a finite time scale associated with an interaction. Within this formalism, it becomes possible to ask many new questions that would be trivial or even ill-defined in the context of the more basic measurement model. In this thesis, we investigate both theoretically and experimentally what fundamentally new capabilities arise when an experimental apparatus can resolve the continuous dynamics of a measurement. Theoretically, we show that when one can perform feedback operations on the timescale of the measurement process, the resulting tools provide significantly more control over entanglement generation, and in some settings can generate it optimally. We derive these results using a novel formalism which encompasses most known quantum feedback protocols. Experimentally, we show that continuous measurement allows one to observe the dynamics of a system undergoing simultaneous non-commuting measurements, which provides a reinterpretation of the Heisenberg uncertainty principle. Finally, we combine the theoretical focus on quantum feedback with the experimental capabilities of superconducting circuits to implement a feedback controlled quantum amplifier. The resulting system is capable of adaptive measurement, which we use to perform the first canonical phase measurement.