论文标题
Gutzwiller共轭梯度最小化理论的一维和二维Hubbard模型的基态特性
Ground state properties of one-dimensional and two-dimensional Hubbard model from Gutzwiller conjugate gradient minimization theory
论文作者
论文摘要
我们介绍了Gutzwiller共轭梯度最小化(GCGM)理论,这是一种用于计算无限系统地面特性的量子多体型理论。 GCGM使用Gutzwiller波函数,但不使用常用的Gutzwiller近似(GA),这是不准确性的主要来源。取而代之的是,该理论使用基于现场配置的职业概率的近似值,而不是将ga中使用的位点相关性的近似值。我们在各种电子密度的一维和二维Hubbard模型中测试了该理论,发现GCGM以很小的计算成本以合理的一致性与基准数据相吻合,以非常小的计算成本重现了能量和双重占用。
We introduce Gutzwiller conjugate gradient minimization (GCGM) theory, an ab initio quantum many-body theory for computing the ground-state properties of infinite systems. GCGM uses the Gutzwiller wave function but does not use the commonly adopted Gutzwiller approximation (GA), which is a major source of inaccuracy. Instead, the theory uses an approximation that is based on the occupation probability of the on-site configurations, rather than approximations that decouple the site-site correlations as used in the GA. We test the theory in the one-dimensional and two-dimensional Hubbard models at various electron densities and find that GCGM reproduces energies and double occupancies in reasonable agreement with benchmark data at a very small computational cost.