论文标题
通过属性指导合成的多尺度热到可见的面部验证
Multi-Scale Thermal to Visible Face Verification via Attribute Guided Synthesis
论文作者
论文摘要
由于模态之间的较大域差异,因此可见的面部验证是一个具有挑战性的问题。现有的方法要么尝试从热面合成可见面,要么从这些模式中学习域的稳健特征,以进行跨模式匹配。在本文中,我们使用从可见图像提取的属性来合成从热图像中属性保存的可见图像进行跨模式匹配。预训练的属性预测网络用于从可见图像中提取属性。然后,提出了一种新型的多尺度发生器,以从提取的属性引导的热图像中合成可见图像。最后,利用预先训练的VGG-FACE网络从合成的图像中提取特征和可见图像以进行验证。在三个数据集(ARL Face数据库,可见和热配对的面部数据库以及Tuft面对数据库)上评估的广泛实验表明,所提出的方法可以实现最新的性能。特别是,与ARL Face数据库,可见的和热配对的面部数据库和簇状面对数据库的最新方法相比,它的误差率(EER)相等2.41 \%,2.85 \%和1.77 \%\%\%\%\%。本文还介绍了一个由121个受试者的偏光热面组成的扩展数据集(ARL面部数据集卷III)。此外,进行了一项消融研究,以证明在提出的方法中不同模块的有效性。
Thermal-to-visible face verification is a challenging problem due to the large domain discrepancy between the modalities. Existing approaches either attempt to synthesize visible faces from thermal faces or learn domain-invariant robust features from these modalities for cross-modal matching. In this paper, we use attributes extracted from visible images to synthesize attribute-preserved visible images from thermal imagery for cross-modal matching. A pre-trained attribute predictor network is used to extract the attributes from the visible image. Then, a novel multi-scale generator is proposed to synthesize the visible image from the thermal image guided by the extracted attributes. Finally, a pre-trained VGG-Face network is leveraged to extract features from the synthesized image and the input visible image for verification. Extensive experiments evaluated on three datasets (ARL Face Database, Visible and Thermal Paired Face Database, and Tufts Face Database) demonstrate that the proposed method achieves state-of-the-art performance. In particular, it achieves around 2.41\%, 2.85\% and 1.77\% improvements in Equal Error Rate (EER) over the state-of-the-art methods on the ARL Face Database, Visible and Thermal Paired Face Database, and Tufts Face Database, respectively. An extended dataset (ARL Face Dataset volume III) consisting of polarimetric thermal faces of 121 subjects is also introduced in this paper. Furthermore, an ablation study is conducted to demonstrate the effectiveness of different modules in the proposed method.