论文标题
在各种文本建模中的编码器折叠不兼容性上
On the Encoder-Decoder Incompatibility in Variational Text Modeling and Beyond
论文作者
论文摘要
变分自动编码器(VAE)将潜在变量与摊销变量推断相结合,其优化通常会收敛成琐碎的局部最佳最佳后置后塌陷,尤其是在文本建模中。通过跟踪优化动力学,我们观察到编码器不兼容,这会导致数据歧管的参数化差。我们认为,可以通过改进编码器和解码器参数化来避免琐碎的局部最优值,因为后网络是它们之间过渡地图的一部分。为此,我们提出了耦合 - VAE,该耦合模型与确定性自动编码器与相同的结构耦合,并通过编码器重量共享和解码器信号匹配来改善编码器和解码器参数化。我们将提出的耦合-VAE方法应用于具有不同正则化,后部家族,解码器结构和优化策略的各种VAE模型。在基准数据集(即PTB,Yelp和Yahoo)上进行的实验在潜在空间的概率估计和丰富度方面持续提高结果。我们还将我们的方法推广到有条件的语言建模并提出耦合-CVAE,这在很大程度上改善了总机数据集上的对话生成的多样性。
Variational autoencoders (VAEs) combine latent variables with amortized variational inference, whose optimization usually converges into a trivial local optimum termed posterior collapse, especially in text modeling. By tracking the optimization dynamics, we observe the encoder-decoder incompatibility that leads to poor parameterizations of the data manifold. We argue that the trivial local optimum may be avoided by improving the encoder and decoder parameterizations since the posterior network is part of a transition map between them. To this end, we propose Coupled-VAE, which couples a VAE model with a deterministic autoencoder with the same structure and improves the encoder and decoder parameterizations via encoder weight sharing and decoder signal matching. We apply the proposed Coupled-VAE approach to various VAE models with different regularization, posterior family, decoder structure, and optimization strategy. Experiments on benchmark datasets (i.e., PTB, Yelp, and Yahoo) show consistently improved results in terms of probability estimation and richness of the latent space. We also generalize our method to conditional language modeling and propose Coupled-CVAE, which largely improves the diversity of dialogue generation on the Switchboard dataset.