论文标题
深卷积特征空间中不变的集成
Invariant Integration in Deep Convolutional Feature Space
论文作者
论文摘要
在这项贡献中,我们展示了如何以原则性的方式将先验知识纳入深度神经网络体系结构。我们使用基于不变集成的新层来强制实施空间不向导。这使我们能够为有限的转换组构建一个完整的功能空间不变。 我们将提出的图层应用于与视觉相关的分类任务插入不变性属性,展示了我们对旋转不变性情况的方法,并在旋转的速度数据集中报告了最先进的性能。在使用有限的数据培训时,我们的方法特别有益。
In this contribution, we show how to incorporate prior knowledge to a deep neural network architecture in a principled manner. We enforce feature space invariances using a novel layer based on invariant integration. This allows us to construct a complete feature space invariant to finite transformation groups. We apply our proposed layer to explicitly insert invariance properties for vision-related classification tasks, demonstrate our approach for the case of rotation invariance and report state-of-the-art performance on the Rotated-MNIST dataset. Our method is especially beneficial when training with limited data.