论文标题

化妆品吸引的化妆清洁剂

Cosmetic-Aware Makeup Cleanser

论文作者

Li, Yi, Huang, Huaibo, Yu, Junchi, He, Ran, Tan, Tieniu

论文摘要

面部验证旨在确定一对面部图像是否属于相同的身份。最近的研究揭示了面部化妆对验证性能的负面影响。随着深层生成模型的快速发展,本文提出了一种Semanticaware化妆清洁剂(SAMC),以在不同的姿势和表达方式下清除面部化妆,并通过产生实现验证。直觉在于,化妆是多种化妆品和量身定制处理的综合作用,应对不同的化妆品区域施加。为此,我们在SAMC中介绍了无监督和监督的语义意识学习策略。在图像级别,与发电机共同学习了一个无监督的注意模块,以定位化妆品区域并估算该程度。在功能级别上,我们求助于训练阶段的面部解析,并设计局部质地损失,以提供补充并追求出色的合成质量。四个Makeupryed数据集的实验结果验证了SAMC不仅以256*256的分辨率产生了吸引人的Demakeup输出,而且还可以通过图像生成来促进化妆不变的面部验证。

Face verification aims at determining whether a pair of face images belongs to the same identity. Recent studies have revealed the negative impact of facial makeup on the verification performance. With the rapid development of deep generative models, this paper proposes a semanticaware makeup cleanser (SAMC) to remove facial makeup under different poses and expressions and achieve verification via generation. The intuition lies in the fact that makeup is a combined effect of multiple cosmetics and tailored treatments should be imposed on different cosmetic regions. To this end, we present both unsupervised and supervised semantic-aware learning strategies in SAMC. At image level, an unsupervised attention module is jointly learned with the generator to locate cosmetic regions and estimate the degree. At feature level, we resort to the effort of face parsing merely in training phase and design a localized texture loss to serve complements and pursue superior synthetic quality. The experimental results on four makeuprelated datasets verify that SAMC not only produces appealing de-makeup outputs at a resolution of 256*256, but also facilitates makeup-invariant face verification through image generation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源