论文标题

Schwarzschild的外部归纳明显视野的初始数据

Exterior Schwarzschild initial data for degenerate apparent horizons

论文作者

Chau, Albert, Martens, Adam

论文摘要

在本说明中,我们表明,如果$ g $是$ \ mathbb {s}^2 $上的平稳的riemannian公制ADM质量任意接近关联的鹰质量$ \ sqrt {\ text {aind {aind}(\ mathbb {s}^2,g)/16π} $。特别是,这确定了Bartnik的准胶质质量(由Bartnik \ cite {Bartnik}在1989年引入)与$(\ Mathbb {s}^2,g)$相关联。我们通过修改Mantoulidis-Schoen \ cite {MS}的构建来证明这些证明,后者在情况下证明了相同的结果$λ_1(l_g)> 0 $。因此,$λ_1(g)\ geq 0 $是必需的,足以满足$(\ mathbb {s}^2,g)$,它来自在显着平坦的时空状态下明显的地平线,在主流能量条件下,并且在时间对称环境中,并且是Bartnik的质量。 $ \ sqrt {\ text {区域}(\ mathbb {s}^2,g)/16π} $。

In this note we show that if $g$ is a smooth Riemannian metric on $\mathbb{S}^2$ such that the first eigenvalue of the operator $L_g:=-Δ_g +K_g$ satisfies $λ_1(L_g)=0$ then $(\mathbb{S}^2, g)$ arises as an apparent horizon in an asymptotically flat initial data set with ADM mass arbitrarily close to the associated Hawking mass $\sqrt{\text{area}(\mathbb{S}^2, g)/16π}$. In particular, this determines the Bartnik quasilocal mass (introduced by Bartnik \cite{Bartnik} in 1989) associated with $(\mathbb{S}^2, g)$ in this setting. We prove these by modifying the construction of Mantoulidis-Schoen \cite{MS} who proved the same results in the case $λ_1(L_g)>0$. It follows that $λ_1(g)\geq 0$ is necessary and sufficient for $(\mathbb{S}^2, g)$ to arise from an apparent horizon in an asyptotically flat space-time under the dominant energy condition and in the time symmetric setting, and that the Bartnik mass of the horizon is $\sqrt{\text{area}(\mathbb{S}^2, g)/16π}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源