论文标题

关于当地的Turán问题

On local Turán problems

论文作者

Frankl, Peter, Huang, Hao, Rödl, Vojtěch

论文摘要

自从其制定表达以来,Turán的超图问题一直是极端组合学中最具挑战性的开放问题之一。其中之一是以下内容:给定$ 3 $ - 均匀的超图$ \ MATHCAL {f} $上的$ n $ Vertices上,其中任何五个顶点至少跨越一个边缘,证明$ | \ Mathcal {f} | \ ge(1/4 -o(1))\ binom {n} {3} $。表明这种界限最好的结构就是$ \ binom {x} {3} \ cup \ binom {y} {3} {3} $,其中$ x $和$ y $ y $均匀分区the vertex set。该构造具有以下更通用的$(2P+1,p+1)$ - 属性:任何$ 2P+1 $ Vertices跨越$ P+1 $顶点的完整子Hypergraph。我们的主要结果之一表明,令人惊讶的是,对于所有$ p> 2 $(2p+1,p+1)$ - 属性意味着猜想的下限。

Since its formulation, Turán's hypergraph problems have been among the most challenging open problems in extremal combinatorics. One of them is the following: given a $3$-uniform hypergraph $\mathcal{F}$ on $n$ vertices in which any five vertices span at least one edge, prove that $|\mathcal{F}| \ge (1/4 -o(1))\binom{n}{3}$. The construction showing that this bound would be best possible is simply $\binom{X}{3} \cup \binom{Y}{3}$ where $X$ and $Y$ evenly partition the vertex set. This construction has the following more general $(2p+1, p+1)$-property: any set of $2p+1$ vertices spans a complete sub-hypergraph on $p+1$ vertices. One of our main results says that, quite surprisingly, for all $p>2$ the $(2p+1,p+1)$-property implies the conjectured lower bound.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源