论文标题
通过增加狄拉克半学连接的几何形状大小,将电子传输维度降低到拓扑铰链状态
Reducing electronic transport dimension to topological hinge states by increasing geometry size of Dirac semimetal Josephson junctions
论文作者
论文摘要
拓扑阶段的概念已扩展到高阶,并已推广到不同的维度。作为一个范式,CD3AS2被预测为高阶拓扑半学,具有三维(3D)的散装dirac费米子,二维(2D)费米弧和一维(1d)铰链状态。这些拓扑状态在电子传输中具有不同的特征长度尺度,可以在更改样本量时区分它们的性质。在这里,我们报告了通过增加基于狄拉克半值CD3AS2的约瑟夫森连接的大小来降低超电流传输的异常尺寸。超电流量子干扰从标准的Fraunhofer图案到超导量子干扰装置(Squid) - 当连接通道长度增加时,就会观察到类似于超导的量子干扰装置(Squid)。鱿鱼状的干扰模式表明超流经1D铰链。 1D铰链状态的识别对于更深入地理解3D Dirac半学中的高阶拓扑阶段应该是有价值的。
The notion of topological phases has been extended to higher-order and has been generalized to different dimensions. As a paradigm, Cd3As2 is predicted to be a higher-order topological semimetal, possessing three-dimensional (3D) bulk Dirac fermions, two-dimensional (2D) Fermi arcs, and one-dimensional (1D) hinge states. These topological states have different characteristic length scales in electronic transport, allowing to distinguish their properties when changing sample size. Here, we report an anomalous dimensional reduction of supercurrent transport by increasing the size of Dirac semimetal Cd3As2-based Josephson junctions. An evolution of the supercurrent quantum interferences from a standard Fraunhofer pattern to a superconducting quantum interference device (SQUID)-like one is observed when the junction channel length is increased. The SQUID-like interference pattern indicates the supercurrent flowing through the 1D hinges. The identification of 1D hinge states should be valuable for deeper understanding the higher-order topological phase in a 3D Dirac semimetal.