论文标题
Novikov-Veselov层次结构的LAX-SATO制定
Lax-Sato formulation of the Novikov-Veselov Hierarchy
论文作者
论文摘要
我们构建了由$ i \ in \ in \ {1,2 \} $和$ n \ in \ Mathbb {z} _ {z} _ {\ geq 0} $ in \ in \ i \ in \ in \ i \ in \ in \ i \ in \ in \ i \ in \ in \ i \ in \ in \ i \ index $ dt_ { \ Mathcal {h})$其中$ \ partial_1 $和$ \ partial_2 $是两个通勤派生,$ \ partial_i \ Mathcal {l} _i $ $是一个自adjoint pseudododifferential pseudodifferential enterrential in $ \ partial_i $ and $ \ nathcal in s s $ scal is s schring is schring is schr { $ \ MATHCAL {H} = \ partial_1 \ partial_2 +u $。 $ \ MATHCAL {L} _1,\ MATHCAL {L} _2 $和$ \ MATHCAL {H} $由关系$ \ Mathcal {H} \ Mathcal {H} \ Mathcal {l} _i+\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {l} _i _i^* _i^* \ Mathcal} = 0.我们表明,流量$ d/dt_ {1,n}+d/dt_ {2,n} $ commute contionution $(\ Mathcal {l} _1,\ Mathcal {l} _2,\ Mathcal {h} _2,\ Mathcal {h} \ Mathcal {h})$,并且该简化层次结构的第一个方程是Novikov-Veselov方程。
We construct a hierarchy of pairwise commuting flows $d/dt_{i,n}$ indexed by $i \in \{1,2 \}$ and $n \in \mathbb{Z}_{\geq 0}$ on triples $(\mathcal{L}_1, \mathcal{L}_2, \mathcal{H})$ where $\partial_1$ and $\partial_2$ are two commuting derivations, $\partial_i \mathcal{L}_i$ is a self-adjoint pseudodifferential operator in $\partial_i$ and $\mathcal{H}$ is the formal Schrödinger operator $\mathcal{H}=\partial_1 \partial_2 +u$. $\mathcal{L}_1, \mathcal{L}_2$ and $\mathcal{H}$ are coupled by the relations $\mathcal{H} \mathcal{L}_i+\mathcal{L}_i^* \mathcal{H}=0$. We show that the flows $d/dt_{1,n}+d/dt_{2,n}$ commute with the involution $(\mathcal{L}_1, \mathcal{L}_2, \mathcal{H}) \mapsto (\mathcal{L}_2, \mathcal{L}_1, \mathcal{H})$ and that the first equation of this reduced hierarchy is the Novikov-Veselov equation.