论文标题

当边界条件有利于这两个阶段之一时,动力学的缩放特性

Scaling properties of the dynamics at first-order quantum transitions when boundary conditions favor one of the two phases

论文作者

Pelissetto, Andrea, Rossini, Davide, Vicari, Ettore

论文摘要

当将其一个哈密顿参数之一驱动到一阶量子转换(FOQT)时,我们解决了多体系统的不平衡动力学。特别是,我们认为系统受固定的边界条件的约束,有利于由FOQT隔开的两个阶段之一:更确切地说,有利于相同磁化相(EFBC)或相反阶段(OFBC)在链条的两端的边界条件。这些问题是在范式的一维量子ISing模型中研究的,其中FOQT由纵向磁场h驱动。我们研究了瞬时淬火的动态行为以及在FOQT中h缓慢变化的方案。我们为EFBC和OFBC开发了动态有限尺寸的缩放理论,该理论在中性边界条件的情况下显示出一些显着的差异。在两种情况下,相应的相关时间尺度显示了定性不同的大小依赖性:在EFBC的情况下,它呈指数增加,并且在OFBC的情况下是大小的幂。

We address the out-of-equilibrium dynamics of a many-body system when one of its Hamiltonian parameters is driven across a first-order quantum transition (FOQT). In particular, we consider systems subject to fixed boundary conditions, favoring one of the two phases separated by the FOQT: more precisely, boundary conditions that favor the same magnetized phase (EFBC) or opposite phases (OFBC) at the two ends of the chain. These issues are investigated within the paradigmatic one-dimensional quantum Ising model, in which FOQTs are driven by the longitudinal magnetic field h. We study the dynamic behavior for an instantaneous quench and for a protocol in which h is slowly varied across the FOQT. We develop a dynamic finite-size scaling theory for both EFBC and OFBC, which displays some remarkable differences with respect to the case of neutral boundary conditions. The corresponding relevant time scale shows a qualitative different size dependence in the two cases: it increases exponentially with the size in the case of EFBC, and as a power of the size in the case of OFBC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源