论文标题
关于线性多代理系统的稳定余量和输入延迟边缘
On the Stability Margin and Input Delay Margin of Linear Multi-agent systems
论文作者
论文摘要
本文提供了一个框架,以表征线性时间流动多代理系统的增益边距,相位边缘和最大输入延迟边距,其中相互作用拓扑由带有定向的Spanning树的图描述。基于广义的Nyquist定理的多代理系统的稳定性分析转换为找到循环传递函数反馈路径中的最小增益阳性确定的遗传干扰和最小相位扰动。具体而言,解决了两个受约束的最小化问题,以计算多代理系统的增益,相位和输入延迟边缘。我们进一步指出,与增益和相位扰动以及输入延迟有关多代理系统稳定性的必要条件和足够的条件。
This paper provides a framework to characterize the gain margin, phase margin, and maximum input delay margin of a linear time-invariant multi-agent system where the interaction topology is described by a graph with a directed spanning tree. The stability analysis of the multi-agent system based on the generalized Nyquist theorem is converted to finding a minimum gain positive definite Hermitian perturbation and minimum phase unitary perturbation in the feedback path of the loop transfer function. Specifically, two constrained minimization problems are solved to calculate the gain, phase, and input delay margins of the multi-agent system. We further state necessary and sufficient conditions concerning stability of the multi-agent system independent of gain and phase perturbations, and input delay.