论文标题

切换或不切换 - 一种机器学习方法

To switch or not to switch -- a machine learning approach for ferroelectricity

论文作者

Neumayer, Sabine M., Jesse, Stephen, Velarde, Gabriel, Kholkin, Andrei L., Kravchenko, Ivan, Martin, Lane W., Balke, Nina, Maksymovych, Peter

论文摘要

随着物理,化学和材料科学方面越来越复杂的实验技术的出现,测量的数据变得越来越大,变得越来越复杂。观察物通常是几种刺激的函数,导致多维数据集跨越一系列实验参数。例如,研究铁电转换的一种常见方法是观察到应用电场的效果,但是切换也可以通过压力来制定,并且受应变场,材料组成,温度,时间等的影响。此外,这些参数通常相互依存,因此它们的脱离分析或分析可能不直接。另一方面,如果存在明确定义的途径来捕获和分析此类数据,那么显式和隐藏参数都提供了一个机会,以更深入地了解所测量的属性。在这里,我们介绍了一种新的二维方法,以表示材料系统用于应用电场的滞后响应。利用铁电偏振为模型滞后特性,我们证明了对机电对两个而不是一个对照电压的明确考虑如何使对观察到的滞后作用的更透明和强大的解释,例如区分电荷诱捕和非电性。此外,我们演示了新数据表示如何容易拟合到各种机械学习方法中,从通过线性簇算法对滞后响应的起源进行无监督分类到基于基于神经网络的基于样本温度的基于神经网络的推断,该推断基于迟发的特定形态。

With the advent of increasingly elaborate experimental techniques in physics, chemistry and materials sciences, measured data are becoming bigger and more complex. The observables are typically a function of several stimuli resulting in multidimensional data sets spanning a range of experimental parameters. As an example, a common approach to study ferroelectric switching is to observe effects of applied electric field, but switching can also be enacted by pressure and is influenced by strain fields, material composition, temperature, time, etc. Moreover, the parameters are usually interdependent, so that their decoupling toward univariate measurements or analysis may not be straightforward. On the other hand, both explicit and hidden parameters provide an opportunity to gain deeper insight into the measured properties, provided there exists a well-defined path to capture and analyze such data. Here, we introduce a new, two-dimensional approach to represent hysteretic response of a material system to applied electric field. Utilizing ferroelectric polarization as a model hysteretic property, we demonstrate how explicit consideration of electromechanical response to two rather than one control voltages enables significantly more transparent and robust interpretation of observed hysteresis, such as differentiating between charge trapping and ferroelectricity. Furthermore, we demonstrate how the new data representation readily fits into a variety of machinelearning methodologies, from unsupervised classification of the origins of hysteretic response via linear clustering algorithms to neural-network-based inference of the sample temperature based on the specific morphology of hysteresis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源