论文标题
类似于UNUH的效果:沿固定世界沿线的有效温度
Unruh-like effects: Effective temperatures along stationary worldlines
论文作者
论文摘要
我们研究了四维Minkowski时空的固定,均匀加速的世界线的详细平衡温度,即(i)线性均匀加速,(ii)(ii),(iii)圆形,(iii)圆形,(iv)Capenary和(v)Capenary和(v)螺旋线的螺旋线,其中特定的情况是无处不在的情况。作为一种测量设备,我们采用了一个Unruh-Dewitt检测器,该检测器被建模为量子,该量子长期与真空状态的无质量Klein-Gordon场相互作用。在每种情况下的温度(i) - (v)是最多三个不变量的功能:曲率或适当的加速度,$κ$,扭转,$ b $和高血压,$ν$,除了(i)外,它们取决于检测器的过渡频率差,$ω$。我们以数值方式调查频率相关的温度的行为,以不同的值,$κ$,$ b $和$ν$沿着固定的世界线(II) - (v)的$ν$进行研究,并分析沿着不同世界线的温度与$κ$,$ $ $ $ $ n nationallines一起评估,在该方案中,沿着不同世界的温度与彼此相吻合。我们证明,在低频率下的unruh温度下(ii) - (v)中的温度下降,并且对大$ |ω| $的温度高于未温度的温度。我们希望这项研究将与寻求验证其不合理效应或概括的实验设计有关。
We study the detailed balance temperatures recorded along all classes of stationary, uniformly accelerated worldlines in four-dimensional Minkowski spacetime, namely along (i) linear uniform acceleration, (ii) cusped, (iii) circular, (iv) catenary, and (v) helix worldlines, among which the Unruh temperature is the particular case for linear uniform acceleration. As a measuring device, we employ an Unruh-DeWitt detector, modeled as a qubit that interacts for a long time with a massless Klein-Gordon field in the vacuum state. The temperatures in each case (i) - (v) are functions of up to three invariant quantities: curvature or proper acceleration, $κ$, torsion, $b$, and hypertorsion, $ν$, and except for the case (i), they depend on the transition frequency difference of the detector, $ω$. We investigate numerically the behavior of the frequency-dependent temperatures for different values of $κ$, $b$, and $ν$ along the stationary worldlines (ii) - (v) and evaluate analytically the regimes where the temperatures recorded along the different worldlines coincide with each other in terms of relevant asymptotic limits for $κ$, $b$, or $ν$, and discuss their physical meaning. We demonstrate that the temperatures in cases (ii) - (v) dip under the Unruh temperature at low frequencies and go above the Unruh temperature for large $|ω|$. It is our hope that this study will be relevant to the design of experiments seeking to verify the Unruh effect or generalizations thereof.