论文标题

FaceChannel:一个轻巧的深度神经网络,用于面部表情识别

The FaceChannel: A Light-weight Deep Neural Network for Facial Expression Recognition

论文作者

Barros, Pablo, Churamani, Nikhil, Sciutti, Alessandra

论文摘要

自动FER的当前最新模型基于难以训练的非常深的神经网络。这使得将这些模型适应不断变化的条件是一项挑战,这是FER模型的要求,鉴于情感感知和理解的主观性质。在本文中,我们通过将FaceChannel正式化,这是一个轻巧的神经网络,该网络的参数比常见的深神经网络少得多。我们在不同的基准数据集上执行一系列实验,以证明与当前的FER相比,FaceChannel如何实现可比较的(即使不是更好的表现)。

Current state-of-the-art models for automatic FER are based on very deep neural networks that are difficult to train. This makes it challenging to adapt these models to changing conditions, a requirement from FER models given the subjective nature of affect perception and understanding. In this paper, we address this problem by formalizing the FaceChannel, a light-weight neural network that has much fewer parameters than common deep neural networks. We perform a series of experiments on different benchmark datasets to demonstrate how the FaceChannel achieves a comparable, if not better, performance, as compared to the current state-of-the-art in FER.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源