论文标题
地形识别的建模范围信息
Modeling Extent-of-Texture Information for Ground Terrain Recognition
论文作者
论文摘要
地形识别是一项艰巨的任务,因为上下文信息在地形图像的区域差异很大。在本文中,我们提出了一种新颖的方法,通过建模文本信息,以在本地进行无订单的纹理组件和有序空间信息之间建立平衡。首先,提出的方法使用CNN骨干特征提取器网络来捕获地形图像的有意义信息,并在本地建模纹理和形状信息的程度。然后,以补丁的方式对无订单的纹理信息和有序形状信息进行编码,该信息由内域消息传递模块使用,以使每个补丁相互意识到彼此以进行丰富的功能学习。接下来,文本范围(EOT)指导的域间消息传递模块将纹理和形状信息的程度与编码的纹理和形状的信息结合在一起,以贴片的方式共享知识,以平衡无订单的纹理信息与有序形状信息。此外,双线性模型在无订单的纹理信息和有序形状信息之间产生成对的相关性。最后,通过完全连接的层执行地面图像分类。实验结果表明,在DTD,MINC和GTOS-Mobile等公开可用数据集上,所提出的模型的性能优于现有最新技术。
Ground Terrain Recognition is a difficult task as the context information varies significantly over the regions of a ground terrain image. In this paper, we propose a novel approach towards ground-terrain recognition via modeling the Extent-of-Texture information to establish a balance between the order-less texture component and ordered-spatial information locally. At first, the proposed method uses a CNN backbone feature extractor network to capture meaningful information of a ground terrain image, and model the extent of texture and shape information locally. Then, the order-less texture information and ordered shape information are encoded in a patch-wise manner, which is utilized by intra-domain message passing module to make every patch aware of each other for rich feature learning. Next, the Extent-of-Texture (EoT) Guided Inter-domain Message Passing module combines the extent of texture and shape information with the encoded texture and shape information in a patch-wise fashion for sharing knowledge to balance out the order-less texture information with ordered shape information. Further, Bilinear model generates a pairwise correlation between the order-less texture information and ordered shape information. Finally, the ground-terrain image classification is performed by a fully connected layer. The experimental results indicate superior performance of the proposed model over existing state-of-the-art techniques on publicly available datasets like DTD, MINC and GTOS-mobile.