论文标题
非平衡量子热力学的增强学习方法
Reinforcement learning approach to non-equilibrium quantum thermodynamics
论文作者
论文摘要
我们使用增强学习方法来减少以平衡构成的封闭量子系统中的熵产生。我们的策略利用了外部控制汉密尔顿和政策梯度技术。我们的方法不依赖于选择的定量工具来表征被考虑的动力学过程引起的热力学不可逆性的程度,几乎不需要了解动力学本身,并且不需要在进化过程中跟踪系统量子状态,从而体现了一种实验性非消除方法来控制非平衡量子量子量量子强度的非e依方法。我们成功地将方法应用于受时间依赖性驱动电位的单粒子系统和两粒子系统的情况。
We use a reinforcement learning approach to reduce entropy production in a closed quantum system brought out of equilibrium. Our strategy makes use of an external control Hamiltonian and a policy gradient technique. Our approach bears no dependence on the quantitative tool chosen to characterize the degree of thermodynamic irreversibility induced by the dynamical process being considered, require little knowledge of the dynamics itself and does not need the tracking of the quantum state of the system during the evolution, thus embodying an experimentally non-demanding approach to the control of non-equilibrium quantum thermodynamics. We successfully apply our methods to the case of single- and two-particle systems subjected to time-dependent driving potentials.