论文标题

高斯过程学习基于概率的最佳功率流

Gaussian Process Learning-based Probabilistic Optimal Power Flow

论文作者

Pareek, Parikshit, Nguyen, Hung D.

论文摘要

在这封信中,我们提出了一种基于新型的高斯过程学习的概率最佳功率流(GP-POPF),用于在可再生和任意分布的不确定性下解决POPF。提出的方法依赖于非参数贝叶斯基于推理的不确定性传播方法,称为高斯过程(GP)。我们还使用有关GP-POPF超参数的解释性观察,建议一种称为子空间灵敏度的新型灵敏度。与蒙特 - 卡洛模拟(MCS)溶液相比,在不同水平的不确定的可再生渗透以及负载不确定性的情况下,该方法在14类和30个总线系统上的仿真结果表明,该方法提供了相当准确的溶液,同时需要较少的样品和经过的时间。

In this letter, we present a novel Gaussian Process Learning-based Probabilistic Optimal Power Flow (GP-POPF) for solving POPF under renewable and load uncertainties of arbitrary distribution. The proposed method relies on a non-parametric Bayesian inference-based uncertainty propagation approach, called Gaussian Process (GP). We also suggest a new type of sensitivity called Subspace-wise Sensitivity, using observations on the interpretability of GP-POPF hyperparameters. The simulation results on 14-bus and 30-bus systems show that the proposed method provides reasonably accurate solutions when compared with Monte-Carlo Simulations (MCS) solutions at different levels of uncertain renewable penetration as well as load uncertainties, while requiring much less number of samples and elapsed time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源