论文标题
JT重力中的多边界相关器
Multi-boundary correlators in JT gravity
论文作者
论文摘要
我们继续对jackiw-teitelboim(JT)重力的热分分区功能进行系统研究,始于[Arxiv:1911.01659]。我们将分析推广到边界创建操作员的帮助下,将我们的分析概括为多边界相关器的情况。我们澄清了在存在多个边界的情况下,Korteweg-de vries的约束是如何产生的,从而得出了相关器遵守的微分方程。微分方程使我们能够在没有歧义的情况下将相关因子的属扩展到任何顺序。我们还制定了一种系统的方法,用于计算贝克 - 阿基策函数的WKB扩展以及多边界相关器的Hooft扩展。这种新的形式主义比基于拓扑递归的先前方法要高得多。我们进一步研究了两势相关器的低温膨胀。我们制定了一种将其计算到任何顺序的方法,并根据误差函数找到两符号相关器的通用形式。使用此结果,我们能够在JT重力中写下光谱形式的分析形式,并显示坡道和高原行为是如何产生的。我们还研究了tau功能的自由玻色子/效率表示中的hartle-hawking状态,并讨论它应该与多边界相关因子相关。
We continue the systematic study of the thermal partition function of Jackiw-Teitelboim (JT) gravity started in [arXiv:1911.01659]. We generalize our analysis to the case of multi-boundary correlators with the help of the boundary creation operator. We clarify how the Korteweg-de Vries constraints arise in the presence of multiple boundaries, deriving differential equations obeyed by the correlators. The differential equations allow us to compute the genus expansion of the correlators up to any order without ambiguity. We also formulate a systematic method of calculating the WKB expansion of the Baker-Akhiezer function and the 't Hooft expansion of the multi-boundary correlators. This new formalism is much more efficient than our previous method based on the topological recursion. We further investigate the low temperature expansion of the two-boundary correlator. We formulate a method of computing it up to any order and also find a universal form of the two-boundary correlator in terms of the error function. Using this result we are able to write down the analytic form of the spectral form factor in JT gravity and show how the ramp and plateau behavior comes about. We also study the Hartle-Hawking state in the free boson/fermion representation of the tau-function and discuss how it should be related to the multi-boundary correlators.