论文标题

史坦纳树的遗传图课程:树宽的视角

Steiner Trees for Hereditary Graph Classes: a Treewidth Perspective

论文作者

Bodlaender, Hans, Brettell, Nick, Johnson, Matthew, Paesani, Giacomo, Paulusma, Daniel, van Leeuwen, Erik Jan

论文摘要

我们考虑了经典问题(边缘)施泰纳树和顶点施泰纳树之后,将输入限制为以一组禁止诱导的子图表为特征的一类图表。我们显示了以前问题的二分法,仅限于$(h_1,h_2)$ - 免费图表和后一个问题的二分法,仅限于$ h $ free图。我们发现存在一个无限的图形$ h $的家族,因此顶点steiner树是$ h​​ $ free Graphs的多项式时间求解,而仅存在两个图形$ h $,它可以容纳Edge Steiner树。我们还发现,Edge Steiner树是$(H_1,H_2)$的多项式时间解决,并且仅当$(H_1,H_2)$的类树宽度时,免费图形是有限的(by P $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ neq $ np)。为了获得后一个结果,我们确定所有对$(H_1,H_2)$的所有对(H_1,H_2)$ - 免费图具有有限的TreeWidth。

We consider the classical problems (Edge) Steiner Tree and Vertex Steiner Tree after restricting the input to some class of graphs characterized by a small set of forbidden induced subgraphs. We show a dichotomy for the former problem restricted to $(H_1,H_2)$-free graphs and a dichotomy for the latter problem restricted to $H$-free graphs. We find that there exists an infinite family of graphs $H$ such that Vertex Steiner Tree is polynomial-time solvable for $H$-free graphs, whereas there exist only two graphs $H$ for which this holds for Edge Steiner Tree. We also find that Edge Steiner Tree is polynomial-time solvable for $(H_1,H_2)$-free graphs if and only if the treewidth of the class of $(H_1,H_2)$-free graphs is bounded (subject to P $\neq$ NP). To obtain the latter result, we determine all pairs $(H_1,H_2)$ for which the class of $(H_1,H_2)$-free graphs has bounded treewidth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源