论文标题

大型所有权 - 所有权管理中的开放问题和挑战

Ownership at Large -- Open Problems and Challenges in Ownership Management

论文作者

Ahlgren, John, Berezin, Maria Eugenia, Bojarczuk, Kinga, Dulskyte, Elena, Dvortsova, Inna, George, Johann, Gucevska, Natalija, Harman, Mark, He, Shan, Lämmel, Ralf, Meijer, Erik, Sapora, Silvia, Spahr-Summers, Justin

论文摘要

软件密集型组织依赖大量不同类型的软件资产,例如源代码文件,数据仓库中的表和软件配置。谁是特定资产中最合适的所有者随着时间的变化,例如,由于重组和个人功能的变化,谁会随着时间的推移而变化。新形式的自动化可以帮助您在给定时间点为任何给定资产提供更多合适的所有者。通过这样的所有权健康的努力,所有权的责任制增加了。寻找最合适的资产所有者的问题本质上是一个计划理解问题:我们如何自动确定谁最适合理解,维护,发展(从而假定所有权)给定资产。本文介绍了Facebook Ollesty System,该系统结合了超大规模数据挖掘和机器学习,并已在Facebook上部署,作为公司所有权管理方法的一部分。 Owhesty处理数百万个软件资产(例如,源代码文件),并考虑了工作流程和组织方面。本文以软件工程,编程语言和机器学习领域的预期为研究社区提出了空旷的问题和对研究社区的所有权挑战。

Software-intensive organizations rely on large numbers of software assets of different types, e.g., source-code files, tables in the data warehouse, and software configurations. Who is the most suitable owner of a given asset changes over time, e.g., due to reorganization and individual function changes. New forms of automation can help suggest more suitable owners for any given asset at a given point in time. By such efforts on ownership health, accountability of ownership is increased. The problem of finding the most suitable owners for an asset is essentially a program comprehension problem: how do we automatically determine who would be best placed to understand, maintain, evolve (and thereby assume ownership of) a given asset. This paper introduces the Facebook Ownesty system, which uses a combination of ultra large scale data mining and machine learning and has been deployed at Facebook as part of the company's ownership management approach. Ownesty processes many millions of software assets (e.g., source-code files) and it takes into account workflow and organizational aspects. The paper sets out open problems and challenges on ownership for the research community with advances expected from the fields of software engineering, programming languages, and machine learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源