论文标题

基于Gumbel-Softmax的优化:用于图形优化问题的简单一般框架

Gumbel-softmax-based Optimization: A Simple General Framework for Optimization Problems on Graphs

论文作者

Li, Yaoxin, Liu, Jing, Lin, Guozheng, Hou, Yueyuan, Mou, Muyun, Zhang, Jiang

论文摘要

在计算机科学中,存在图表上定义的大量优化问题,即找到最佳的节点状态配置或网络结构,以便在某些约束下优化了设计的目标函数。但是,这些问题因其难以解决的问题而臭名昭著,因为它们大多数是NP-HARD或NP完整的。尽管传统的一般方法(例如模拟退火(SA),遗传算法(GA)等)已设计为这些严重问题,但在实践中,它们的准确性和时间消耗并不满足。在这项工作中,我们提出了一个基于深度学习框架赋予的高级自动分化技术的简单,快速和一般的算法框架。通过引入Gumbel-Softmax技术,无论变量的离散性质如何,我们都可以通过梯度下降算法直接优化目标函数。我们还将进化策略引入了我们的算法的并行版本。我们在图上的三个代表性优化问题上测试了算法,包括来自网络科学的模块化优化,来自统计物理学的Sherrington-Kirkpatrick(SK)模型,最大独立集(MIS)和最小顶点覆盖率(MVC)问题(MVC)问题。与传统方法相比,可以在耗时少得多的情况下获得高质量的解决方案。

In computer science, there exist a large number of optimization problems defined on graphs, that is to find a best node state configuration or a network structure such that the designed objective function is optimized under some constraints. However, these problems are notorious for their hardness to solve because most of them are NP-hard or NP-complete. Although traditional general methods such as simulated annealing (SA), genetic algorithms (GA) and so forth have been devised to these hard problems, their accuracy and time consumption are not satisfying in practice. In this work, we proposed a simple, fast, and general algorithm framework based on advanced automatic differentiation technique empowered by deep learning frameworks. By introducing Gumbel-softmax technique, we can optimize the objective function directly by gradient descent algorithm regardless of the discrete nature of variables. We also introduce evolution strategy to parallel version of our algorithm. We test our algorithm on three representative optimization problems on graph including modularity optimization from network science, Sherrington-Kirkpatrick (SK) model from statistical physics, maximum independent set (MIS) and minimum vertex cover (MVC) problem from combinatorial optimization on graph. High-quality solutions can be obtained with much less time consuming compared to traditional approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源