论文标题

有限维尖的霍普夫代数在阿贝尔群体上

Cohomology rings of finite-dimensional pointed Hopf algebras over abelian groups

论文作者

Andruskiewitsch, Nicolás, Angiono, Iván, Pevtsova, Julia, Witherspoon, Sarah

论文摘要

我们表明,有限生成的有限维复合物尖头的Hopf代数的共同学环有限地产生。我们的策略有三个主要步骤。我们首先将问题减少到有限维数nichols代数的有限生成。对于Nichols代数,我们通过ANICK解决方案进行了详细的共同分析,将问题进一步降低到特定的组合特性。最后,要检查这些属性,我们转向由于Heckenberger而导致的对角线类型的Nichols代数的分类。在本文中,我们完成了对主要参数家族的这些组合特性的验证,包括Cartan和Super类型的Nichols代数,并开发出逐案分析所需的所有理论基础。其余的离散家庭在另一份出版物中被解决。作为主要定理的应用,我们针对其他类别的有限型HOPF代数,推断出有限的共同体学,包括基本的Hopf代数,具有Abelian Charnem of Carnem和一个量子组的有限商。

We show that the cohomology ring of a finite-dimensional complex pointed Hopf algebra with an abelian group of group-like elements is finitely generated. Our strategy has three major steps. We first reduce the problem to the finite generation of cohomology of finite dimensional Nichols algebras of diagonal type. For the Nichols algebras we do a detailed analysis of cohomology via the Anick resolution reducing the problem further to specific combinatorial properties. Finally, to check these properties we turn to the classification of Nichols algebras of diagonal type due to Heckenberger. In this paper we complete the verification of these combinatorial properties for major parametric families, including Nichols algebras of Cartan and super types and develop all the theoretical foundations necessary for the case-by-case analysis. The remaining discrete families are addressed in a separate publication. As an application of the main theorem we deduce finite generation of cohomology for other classes of finite-dimensional Hopf algebras, including basic Hopf algebras with abelian groups of characters and finite quotients of quantum groups at roots of one.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源