论文标题

一个新型的无压力两流体模型,用于一维不可压缩的多相

A novel pressure-free two-fluid model for one-dimensional incompressible multiphase flow

论文作者

Sanderse, B., Buist, J. F. H., Henkes, R. A. W. M.

论文摘要

提出了一种新型的无压力两流体模型公式,以模拟管道和通道中的一维不可压缩多相流。通过同时消除广泛使用的两流体模型(TFM)的压力来获得该模型。所得的“无压力两流体模型”(PF-TFM)具有许多吸引人的功能:(i)它具有四个进化方程(无其他约束),可以通过明确的时间积分方法非常快速地求解; (ii)它保留了原始两流体模型的保护特性,因此在不连续性的情况下是正确的冲击关系; (iii)其解决方案完全满足了两个TFM约束:体积约束和体积流量约束; (iv)由于删除了约束,因此提供了一种方便的形式来分析方程系统。提出了交错的网格空间离散和显式runge-kutta时间集成方法,该方法在数值求解PF-TFM时使约束确切满足。此外,对于强加的边界条件的情况,提出了一种新颖的适应性runge-kutta公式,可以使体积流保持准确,同时保持高阶精度。几个测试用例证实了理论特性,并显示了新的无压力模型的效率。

A novel pressure-free two-fluid model formulation is proposed for the simulation of one-dimensional incompressible multiphase flow in pipelines and channels. The model is obtained by simultaneously eliminating the volume constraint and the pressure from the widely used two-fluid model (TFM). The resulting `pressure-free two-fluid model' (PF-TFM) has a number of attractive features: (i) it features four evolution equations (without additional constraints) that can be solved very quickly with explicit time integration methods; (ii) it keeps the conservation properties of the original two-fluid model, and therefore the correct shock relations in case of discontinuities; (iii) its solutions satisfy the two TFM constraints exactly: the volume constraint and the volumetric flow constraint; (iv) it offers a convenient form to analytically analyse the equation system, since the constraint has been removed. A staggered-grid spatial discretization and an explicit Runge-Kutta time integration method are proposed, which keep the constraints exactly satisfied when numerically solving the PF-TFM. Furthermore, for the case of strongly imposed boundary conditions, a novel adapted Runge-Kutta formulation is proposed that keeps the volumetric flow exact in time while retaining high order accuracy. Several test cases confirm the theoretical properties and show the efficiency of the new pressure-free model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源