论文标题
连接太阳能和恒星亮度变化的测量
Connecting measurements of solar and stellar brightness variations
论文作者
论文摘要
比较太阳能和恒星亮度变化受到观测中使用的光谱带的差异的差异以及视力线倾斜旋转轴的可能差异的差异。我们计算出太阳的旋转变异性,因为它将在用于恒星观测的通带中测量。特别是,我们考虑了Corot使用的过滤系统,$ Kepler $,TESS和$ GAIA $空间任务。我们还量化了旋转轴倾斜对太阳旋转变异性的影响。我们采用光谱和总辐照度重建(讽刺)模型来计算不同滤波器系统中的太阳亮度变化,如黄道平面所观察到的。然后,我们使用表面通量传输模型(SFTM)与讽刺计算结合了在不同倾斜倾斜处的表面分布的模拟,以计算变异性对倾斜度的依赖性。对于黄道结合的观察者,在总太阳辐照度(TSI)中观察到的太阳旋转变异性的幅度为0.68 mmag(在太阳能循环上平均21-24)。我们在$开普勒$(0.74 mmag),corot(0.73 mmag),苔丝(0.62 mmag),$ gaia〜 $(0.74 mmag),$ gaia〜g_ {rp} $(0.62 mmag)$(0.62 mmag)等中获得了相应的振幅。降低旋转轴的倾斜度会降低旋转变异性。对于随机倾斜的恒星样本,在这项工作中考虑的所有过滤系统中,可变性平均降低了15%。这几乎弥补了TSI和$开普勒$ PassBands变异性幅度的差异,这使得从TSI记录得出的幅度成为太阳旋转变化的理想表示,以与$ KEKPLER $星星与未知倾斜度进行比较。
Comparing solar and stellar brightness variations is hampered by the difference in spectral passbands used in observations as well as by the possible difference in the inclination of their rotation axes from the line of sight. We calculate the rotational variability of the Sun as it would be measured in passbands used for stellar observations. In particular, we consider the filter systems used by the CoRoT, $Kepler$, TESS, and $Gaia$ space missions. We also quantify the effect of the inclination of the rotation axis on the solar rotational variability. We employ the Spectral And Total Irradiance REconstructions (SATIRE) model to calculate solar brightness variations in different filter systems as observed from the ecliptic plane. We then combine the simulations of the surface distribution of the magnetic features at different inclinations using a surface flux transport model (SFTM) with the SATIRE calculations to compute the dependence of the variability on the inclination. For an ecliptic-bound observer, the amplitude of the solar rotational variability, as observed in the total solar irradiance (TSI) is 0.68 mmag (averaged over solar cycles 21-24). We obtained corresponding amplitudes in the $Kepler$ (0.74 mmag), CoRoT (0.73 mmag), TESS (0.62 mmag), $Gaia~ $ (0.74 mmag), $Gaia~ G_{RP}$ (0.62 mmag), and ), $Gaia~ G_{BP}$ (0.86 mmag) passbands. Decreasing the inclination of the rotation axis decreases the rotational variability. For a sample of randomly inclined stars, the variability is on average 15% lower in all filter systems considered in this work. This almost compensates for the difference in the amplitudes of the variability in TSI and $Kepler$ passbands, making the amplitudes derived from the TSI records an ideal representation of the solar rotational variability for comparison to $Kepler$ stars with unknown inclinations.