论文标题
在换档场景中对自动驾驶汽车的对抗评估
Adversarial Evaluation of Autonomous Vehicles in Lane-Change Scenarios
论文作者
论文摘要
在部署在城市和高速公路上之前,必须对自动驾驶汽车进行全面评估。但是,自动驾驶汽车的大多数现有评估方法都是静态的,并且缺乏适应性,因此它们通常无法为测试车辆产生挑战性的情况。在本文中,我们提出了一个自适应评估框架,以有效评估由深度强化学习产生的对抗环境中的自动驾驶汽车。考虑到危险场景的多模式性质,我们使用集合模型来代表不同的当地最佳多样性。然后,我们利用一种非参数贝叶斯方法来聚集对抗性策略。在典型的车道变化场景中验证了所提出的方法,该场景涉及自我车辆与周围车辆之间的频繁相互作用。结果表明,我们方法产生的对抗场景会大大降低测试车辆的性能。我们还说明了产生的对抗环境的不同模式,这些模式可用于推断经过测试的车辆的弱点。
Autonomous vehicles must be comprehensively evaluated before deployed in cities and highways. However, most existing evaluation approaches for autonomous vehicles are static and lack adaptability, so they are usually inefficient in generating challenging scenarios for tested vehicles. In this paper, we propose an adaptive evaluation framework to efficiently evaluate autonomous vehicles in adversarial environments generated by deep reinforcement learning. Considering the multimodal nature of dangerous scenarios, we use ensemble models to represent different local optimums for diversity. We then utilize a nonparametric Bayesian method to cluster the adversarial policies. The proposed method is validated in a typical lane-change scenario that involves frequent interactions between the ego vehicle and the surrounding vehicles. Results show that the adversarial scenarios generated by our method significantly degrade the performance of the tested vehicles. We also illustrate different patterns of generated adversarial environments, which can be used to infer the weaknesses of the tested vehicles.