论文标题

BUGDOC:调试计算过程的算法

BugDoc: Algorithms to Debug Computational Processes

论文作者

Lourenço, Raoni, Freire, Juliana, Shasha, Dennis

论文摘要

科学实验和企业,大规模模拟和机器学习任务的数据分析都需要使用复杂的计算管道来得出定量和定性的结论。如果管道中的某些活动产生错误的输出,则管道可能无法执行或产生错误的结果。推断出这种失败的根本原因是具有挑战性的,通常需要时间和人类的思想,同时仍然容易出错。我们提出了一种新方法,利用迭代和出处来自动推断根本原因并得出失败的简洁解释。通过详细的实验评估,我们评估了与艺术状况相比,我们的方法的成本,精度和回忆。我们的实验数据和处理软件可用于使用,可重复性和增强。

Data analysis for scientific experiments and enterprises, large-scale simulations, and machine learning tasks all entail the use of complex computational pipelines to reach quantitative and qualitative conclusions. If some of the activities in a pipeline produce erroneous outputs, the pipeline may fail to execute or produce incorrect results. Inferring the root cause(s) of such failures is challenging, usually requiring time and much human thought, while still being error-prone. We propose a new approach that makes use of iteration and provenance to automatically infer the root causes and derive succinct explanations of failures. Through a detailed experimental evaluation, we assess the cost, precision, and recall of our approach compared to the state of the art. Our experimental data and processing software is available for use, reproducibility, and enhancement.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源