论文标题

通过将组合搜索与LP放松限制在地图推导

Exact MAP-Inference by Confining Combinatorial Search with LP Relaxation

论文作者

Haller, Stefan, Swoboda, Paul, Savchynskyy, Bogdan

论文摘要

我们考虑图形模型的地图 - 推荐问题,这是一个有价值的约束满意度问题,该问题在实际数字上定义了自然求和操作。我们提出了一个放松家族(与著名的Sherali-Adams层次结构不同),该家庭自然定义了其最佳限制的下限。这个家庭总是包含一个紧张的放松,我们给出了一种能够找到它的算法,因此解决了最初的非放松的NP-HARD问题。 我们考虑的放松将原始问题分解为两个非重叠部分:简单的LP密度部分和一个困难的部分。对于后一部分,必须使用组合求解器。正如我们在实验中显示的那样,在许多应用中,第二个困难部分仅构成了整个问题的一小部分。该属性可以显着减少组合求解器的计算时间,从而解决以前无法解决的问题。

We consider the MAP-inference problem for graphical models, which is a valued constraint satisfaction problem defined on real numbers with a natural summation operation. We propose a family of relaxations (different from the famous Sherali-Adams hierarchy), which naturally define lower bounds for its optimum. This family always contains a tight relaxation and we give an algorithm able to find it and therefore, solve the initial non-relaxed NP-hard problem. The relaxations we consider decompose the original problem into two non-overlapping parts: an easy LP-tight part and a difficult one. For the latter part a combinatorial solver must be used. As we show in our experiments, in a number of applications the second, difficult part constitutes only a small fraction of the whole problem. This property allows to significantly reduce the computational time of the combinatorial solver and therefore solve problems which were out of reach before.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源