论文标题

从总体观察中学习

Learning from Aggregate Observations

论文作者

Zhang, Yivan, Charoenphakdee, Nontawat, Wu, Zhenguo, Sugiyama, Masashi

论文摘要

我们研究了从总体观察中学习的问题,在这些观察值中,在其中提供了对实例集的监督信号,而不是个人实例,而目标仍是预测看不见的个体的标签。一个众所周知的例子是多个实例学习(MIL)。在本文中,我们将MIL超越二元分类扩展到其他问题,例如多类分类和回归。我们提出了一个一般的概率框架,该框架可容纳各种总观测值,例如,分类和平均/差异/等级观察的成对相似性/三重态比较。简单的最大似然解决方案可以应用于各种可区分的模型,例如深神经网络和梯度增强机。此外,我们将一致性的概念发展为表征我们的估计器的等效关系,并表明它在轻度假设下具有不错的收敛性能。对三个问题设置的实验 - 通过三重态比较和通过平均/等级观察进行回归的分类表明该方法的有效性。

We study the problem of learning from aggregate observations where supervision signals are given to sets of instances instead of individual instances, while the goal is still to predict labels of unseen individuals. A well-known example is multiple instance learning (MIL). In this paper, we extend MIL beyond binary classification to other problems such as multiclass classification and regression. We present a general probabilistic framework that accommodates a variety of aggregate observations, e.g., pairwise similarity/triplet comparison for classification and mean/difference/rank observation for regression. Simple maximum likelihood solutions can be applied to various differentiable models such as deep neural networks and gradient boosting machines. Moreover, we develop the concept of consistency up to an equivalence relation to characterize our estimator and show that it has nice convergence properties under mild assumptions. Experiments on three problem settings -- classification via triplet comparison and regression via mean/rank observation indicate the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源