论文标题

高对比度弹性复合材料中应力浓度的渐近分数

Asymptotics of the stress concentration in high-contrast elastic composites

论文作者

Li, Haigang, Xu, Longjuan

论文摘要

长期存在的材料科学研究领域是对复合材料中的静电,磁性和弹性领域的研究,其材料特性与背景的材料特性不同。对于一般的椭圆系统,当系数是分段的Hölder连续且均匀边界时,Li和Nirenberg \ cite {ln}获得了梯度的$ \ varepsilon $独立界限,其中$ \ varepsilon $代表近距离之间的距离。但是,在高对比度的复合材料中,当$ \ varepsilon $趋于零时,压力总是集中在狭窄的区域。与Li和Nirenberg的统一界限相反,为了研究$ \ varepsilon $在这种浓度现象中播放的$ \ varepsilon $的作用,在本文中,我们建立了对Lamé系统的溶液梯度的膨胀渐近表达,具有在两位和三个和三个二级和三层中的部分无限系数。我们发现了应力的爆破率与相邻表面的相对凸度之间的关系,并找到相对于边界数据的爆炸因子矩阵家族。因此,这项工作完全解决了Babuuska问题,用于对高对比度培养基中应力浓度的爆破分析。此外,作为这些局部分析的副产品,我们在周期性复合材料的全球有效弹性特性上建立了一个扩展的弗拉赫特式面包剂公式,并具有密集填充纤维的周期性复合材料,该特性与纤维形状优化的“ Vigdergauz微结构”有关。

A long-standing area of materials science research has been the study of electrostatic, magnetic, and elastic fields in composite with densely packed inclusions whose material properties differ from that of the background. For a general elliptic system, when the coefficients are piecewise Hölder continuous and uniformly bounded, an $\varepsilon$-independent bound of the gradient was obtained by Li and Nirenberg \cite{ln}, where $\varepsilon$ represents the distance between the interfacial surfaces. However, in high-contrast composites, when $\varepsilon$ tends to zero, the stress always concentrates in the narrow regions. As a contrast to the uniform boundedness result of Li and Nirenberg, in order to investigate the role of $\varepsilon$ played in such kind of concentration phenomenon, in this paper we establish the blow-up asymptotic expressions of the gradients of solutions to the Lamé system with partially infinite coefficients in dimensions two and three. We discover the relationship between the blow-up rate of the stress and the relative convexity of adjacent surfaces, and find a family of blow-up factor matrices with respect to the boundary data. Therefore, this work completely solves the Babuuska problem on blow-up analysis of stress concentration in high-contrast composite media. Moreover, as a byproduct of these local analysis, we establish an extended Flaherty-Keller formula on the global effective elastic property of a periodic composite with densely packed fibers, which is related to the "Vigdergauz microstructure" in the shape optimization of fibers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源