论文标题

RealMonoDepth:一般场景的自我监督的单眼深度估计

RealMonoDepth: Self-Supervised Monocular Depth Estimation for General Scenes

论文作者

Ocal, Mertalp, Mustafa, Armin

论文摘要

我们提出了一种广义的自我监督学习方法,用于对不同深度范围从1--100米的各种场景的真实深度进行单眼估计。现有的单眼深度估计方法需要进行训练的准确测量。这种局限性导致引入了自我监督的方法,这些方法在立体声图像对上进行了训练,并具有固定的摄像头基线,以估计估计差异,并在给定已知校准的情况下转换为深度。自我监督的方法已显示出令人印象深刻的结果,但并未推广到不同深度范围或相机基线的场景。在本文中,我们介绍了一种自我监督的单眼估计方法,该方法学会了估算各种室内和室外场景的真实场景深度。提出了基于相对深度缩放和翘曲的真实场景深度的新型损失功能。这允许对单个网络进行自我监督的培训,该培训具有多个数据集,可为具有多个深度范围的场景介绍,范围从立体声对和野生移动相机数据集。对五个基准数据集进行的全面性能评估表明,RealMonoDepth提供了一个训练有素的网络,该网络在室内和室外场景中概括了深度估计,从而始终优于先前的自我监督方法。

We present a generalised self-supervised learning approach for monocular estimation of the real depth across scenes with diverse depth ranges from 1--100s of meters. Existing supervised methods for monocular depth estimation require accurate depth measurements for training. This limitation has led to the introduction of self-supervised methods that are trained on stereo image pairs with a fixed camera baseline to estimate disparity which is transformed to depth given known calibration. Self-supervised approaches have demonstrated impressive results but do not generalise to scenes with different depth ranges or camera baselines. In this paper, we introduce RealMonoDepth a self-supervised monocular depth estimation approach which learns to estimate the real scene depth for a diverse range of indoor and outdoor scenes. A novel loss function with respect to the true scene depth based on relative depth scaling and warping is proposed. This allows self-supervised training of a single network with multiple data sets for scenes with diverse depth ranges from both stereo pair and in the wild moving camera data sets. A comprehensive performance evaluation across five benchmark data sets demonstrates that RealMonoDepth provides a single trained network which generalises depth estimation across indoor and outdoor scenes, consistently outperforming previous self-supervised approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源