论文标题
多样性有帮助:通过基于分发偏移的数据扩展,无监督的几次学习
Diversity Helps: Unsupervised Few-shot Learning via Distribution Shift-based Data Augmentation
论文作者
论文摘要
当只有几个培训示例可用时,很少有学习旨在学习新概念,而近年来已经对此进行了广泛的探讨。但是,当前大多数作品都在很大程度上依赖一个标有辅助设置的大型标签,以在情节训练范式中训练其模型。这种监督的设置基本上限制了少数弹药学习算法的广泛使用。取而代之的是,在本文中,我们通过基于分配移位的数据增强(ULDA)开发了一个新颖的框架,称为“无监督的几次学习”,该框架在使用数据增强时,请注意每个构造的借口中的分布多样性。重要的是,我们强调了分布多样性在基于增强的借口中的价值和重要性,几乎没有弹头任务,这可以有效地减轻过度拟合的问题,并使几个模型学习更强大的功能表示。在ULDA中,我们从系统地研究了不同的增强技术的影响,并提出通过通过多样化(即分配转移)来增强这两组,以增强查询集和每个几次任务中的查询集和支持设置之间的分布多样性(或差异)。通过这种方式,即使与简单的增强技术(例如,随机作物,颜色抖动或旋转)结合在一起,我们的ULDA也可以产生重大的改进。在实验中,ULDA学到的很少的射击模型可以实现出色的概括性能,并获得最先进的结果,从而获得了有关Omniglot和Miniimagenet的各种已建立的少数学习任务。源代码可在https://github.com/wonderseven/ulda中找到。
Few-shot learning aims to learn a new concept when only a few training examples are available, which has been extensively explored in recent years. However, most of the current works heavily rely on a large-scale labeled auxiliary set to train their models in an episodic-training paradigm. Such a kind of supervised setting basically limits the widespread use of few-shot learning algorithms. Instead, in this paper, we develop a novel framework called Unsupervised Few-shot Learning via Distribution Shift-based Data Augmentation (ULDA), which pays attention to the distribution diversity inside each constructed pretext few-shot task when using data augmentation. Importantly, we highlight the value and importance of the distribution diversity in the augmentation-based pretext few-shot tasks, which can effectively alleviate the overfitting problem and make the few-shot model learn more robust feature representations. In ULDA, we systemically investigate the effects of different augmentation techniques and propose to strengthen the distribution diversity (or difference) between the query set and support set in each few-shot task, by augmenting these two sets diversely (i.e., distribution shifting). In this way, even incorporated with simple augmentation techniques (e.g., random crop, color jittering, or rotation), our ULDA can produce a significant improvement. In the experiments, few-shot models learned by ULDA can achieve superior generalization performance and obtain state-of-the-art results in a variety of established few-shot learning tasks on Omniglot and miniImageNet. The source code is available in https://github.com/WonderSeven/ULDA.