论文标题

SFE-GACN:一种新型未知攻击检测方法,使用嵌入空间中的类别产生

SFE-GACN: A Novel Unknown Attack Detection Method Using Intra Categories Generation in Embedding Space

论文作者

Liu, Ao, Wang, Yunpeng, Li, Tao

论文摘要

在加密的网络流量入侵检测中,基于深度学习的方案吸引了很多关注。但是,在实际情况下,数据通常不足(少数),这会导致模型预测与地面真相之间的各种偏差。因此,下游任务,例如基于几射击的未知攻击检测将受到数据不足的限制。在本文中,我们提出了一种基于嵌入空间内类别产生的新型未知攻击检测方法,即SFE-GACN,这可能是少数问题的解决方案。具体而言,我们首先提出的会话功能嵌入(SFE)总结了会话的上下文(会话是网络流量的基本粒度),将数据不足带到预先训练的嵌入式空间中。通过这种方式,我们实现了在几种案例中进行初步信息扩展的目标。其次,我们进一步提出了生成的对抗合作网络(GACN),该网络通过监督生成的样本来避免属于相似的类别,从而改善了传统的生成对抗网络,从而使样本能够生成内部类别。我们提出的SFE-GACN可以在很少的情况下准确地生成会话样本,并确保数据增强过程中类别之间的差异。检测结果表明,与最新方法相比,平均TPR高8.38%,平均FPR降低了12.77%。此外,我们评估了GACN在图形数据集上的图形生成功能,结果表明我们所提出的GACN可以广泛使用,以生成易于融合的多类别图形。

In the encrypted network traffic intrusion detection, deep learning based schemes have attracted lots of attention. However, in real-world scenarios, data is often insufficient (few-shot), which leads to various deviations between the models prediction and the ground truth. Consequently, downstream tasks such as unknown attack detection based on few-shot will be limited by insufficient data. In this paper, we propose a novel unknown attack detection method based on Intra Categories Generation in Embedding Space, namely SFE-GACN, which might be the solution of few-shot problem. Concretely, we first proposed Session Feature Embedding (SFE) to summarize the context of sessions (session is the basic granularity of network traffic), bring the insufficient data to the pre-trained embedding space. In this way, we achieve the goal of preliminary information extension in the few-shot case. Second, we further propose the Generative Adversarial Cooperative Network (GACN), which improves the conventional Generative Adversarial Network by supervising the generated sample to avoid falling into similar categories, and thus enables samples to generate intra categories. Our proposed SFE-GACN can accurately generate session samples in the case of few-shot, and ensure the difference between categories during data augmentation. The detection results show that, compared to the state-of-the-art method, the average TPR is 8.38% higher, and the average FPR is 12.77% lower. In addition, we evaluated the graphics generation capabilities of GACN on the graphics dataset, the result shows our proposed GACN can be popularized for generating easy-confused multi-categories graphics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源