论文标题

用于消除图中爪的线性时间算法

Linear-time Algorithms for Eliminating Claws in Graphs

论文作者

Bonomo-Braberman, Flavia, Nascimento, Julliano R., Oliveira, Fabiano S., Souza, Uéverton S., Szwarcfiter, Jayme L.

论文摘要

由于在仅限于无爪图的情况下,已经显示了许多NP完整的图形问题可溶可解的多项式时间,因此我们研究了确定给定图与无爪图的距离的问题,将其视为措施。无爪顶点删除(CFVD)包括确定要从图中删除的最小顶点数量,以使所得图无爪。尽管CFVD一般是NP纯的,并且识别无爪图仍然是一个挑战,在该图形$ G $的当前最佳算法具有与矩阵乘法最佳算法的相同运行时间,但我们呈现加权块上的CFVD的线性时间算法,并具有加权块图和带有限制性树木的加权图形的CFVD。此外,我们证明可以通过森林上的简单算法在线性时间解决此问题,并确定完整$ k $ are树的确切值。另一方面,我们表明,即使输入图是一个拆分图,无爪顶点删除也是NP完成的。我们还表明,假设唯一的游戏猜想,这个问题很难在任何不变因素内都比$ 2 $好。

Since many NP-complete graph problems have been shown polynomial-time solvable when restricted to claw-free graphs, we study the problem of determining the distance of a given graph to a claw-free graph, considering vertex elimination as measure. CLAW-FREE VERTEX DELETION (CFVD) consists of determining the minimum number of vertices to be removed from a graph such that the resulting graph is claw-free. Although CFVD is NP-complete in general and recognizing claw-free graphs is still a challenge, where the current best algorithm for a graph $G$ has the same running time of the best algorithm for matrix multiplication, we present linear-time algorithms for CFVD on weighted block graphs and weighted graphs with bounded treewidth. Furthermore, we show that this problem can be solved in linear time by a simpler algorithm on forests, and we determine the exact values for full $k$-ary trees. On the other hand, we show that CLAW-FREE VERTEX DELETION is NP-complete even when the input graph is a split graph. We also show that the problem is hard to approximate within any constant factor better than $2$, assuming the Unique Games Conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源