论文标题

基于深度学习的拓扑优化,用于表示用户指定的设计领域

Deep learning-based topological optimization for representing a user-specified design area

论文作者

Nakamura, Keigo, Suzuki, Yoshiro

论文摘要

目前,拓扑优化需要多次迭代,以为给定条件创建优化的结构。在拓扑优化的条件中,设计区域是结构设计最重要的领域之一。在这项研究中,我们提出了一个新的深度学习模型,以在没有迭代的情况下为给定的设计领域和其他边界条件生成优化的结构。为此,我们使用开源拓扑优化MATLAB代码在各种设计条件下生成一对优化结构。优化结构的分辨率为32 * 32像素,设计条件是设计区域,体积分数,外力的分布和负载值。我们的深度学习模型主要由基于卷积的神经网络(CNN)的编码器和解码器组成,该编码器和解码器接受了使用MATLAB代码生成的数据集进行培训。在编码器中,我们使用批处理(BN)来提高CNN模型的稳定性。在解码器中,我们使用Spade(具有空间自适应的否定化)来加强设计区域信息。将我们提出的模型的性能与不使用BN和Spade的CNN模型的性能,平均绝对误差(MAE)的值,平均合规误差和音量误差的值以及MAT-LAB代码中的优化拓扑结构的值较小,并且所提出的模型能够更准确地表示设计区域。与开源拓扑优化MATLAB代码相比,所提出的方法生成了近乎最佳的结构,该结构反映出设计区域的计算时间更少。

Presently, topology optimization requires multiple iterations to create an optimized structure for given conditions. Among the conditions for topology optimization,the design area is one of the most important for structural design. In this study, we propose a new deep learning model to generate an optimized structure for a given design domain and other boundary conditions without iteration. For this purpose, we used open-source topology optimization MATLAB code to generate a pair of optimized structures under various design conditions. The resolution of the optimized structure is 32 * 32 pixels, and the design conditions are design area, volume fraction, distribution of external forces, and load value. Our deep learning model is primarily composed of a convolutional neural network (CNN)-based encoder and decoder, trained with datasets generated with MATLAB code. In the encoder, we use batch normalization (BN) to increase the stability of the CNN model. In the decoder, we use SPADE (spatially adaptive denormalization) to reinforce the design area information. Comparing the performance of our proposed model with a CNN model that does not use BN and SPADE, values for mean absolute error (MAE), mean compliance error, and volume error with the optimized topology structure generated in MAT-LAB code were smaller, and the proposed model was able to represent the design area more precisely. The proposed method generates near-optimal structures reflecting the design area in less computational time, compared with the open-source topology optimization MATLAB code.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源